
Quantum Lower and Upper Bounds for 2D-Grid1

and Dyck Language2

Andris Ambainis, Kaspars Balodis, Jānis Iraids3

Center for Quantum Computer Science, Faculty of Computing, University of Latvia4

Kamil Khadiev5

Kazan Federal University, Kazan, Russia6

Vladislavs Kl,evickis, Krišjānis Prūsis7

Center for Quantum Computer Science, Faculty of Computing, University of Latvia8

Yixin Shen9

Université de Paris, CNRS, IRIF, F-75006 Paris, France10

Juris Smotrovs, Jevgēnijs Vihrovs11

Center for Quantum Computer Science, Faculty of Computing, University of Latvia12

Abstract13

We study the quantum query complexity of two problems.14

First, we consider the problem of determining if a sequence of parentheses is a properly balanced15

one (a Dyck word), with a depth of at most k. We call this the Dyckk,n problem. We prove a16

lower bound of Ω(ck
√

n), showing that the complexity of this problem increases exponentially in17

k. Here n is the length of the word. When k is a constant, this is interesting as a representative18

example of star-free languages for which a surprising Õ(
√

n) query quantum algorithm was recently19

constructed by Aaronson et al. [1]. Their proof does not give rise to a general algorithm. When k is20

not a constant, Dyckk,n is not context-free. We give an algorithm with O
(√

n(log n)0.5k) quantum21

queries for Dyckk,n for all k. This is better than the trival upper bound n for k = o
(log(n)

log logn

)
.22

Second, we consider connectivity problems on grid graphs in 2 dimensions, if some of the edges of23

the grid may be missing. By embedding the “balanced parentheses” problem into the grid, we show24

a lower bound of Ω(n1.5−ε) for the directed 2D grid and Ω(n2−ε) for the undirected 2D grid. The25

directed problem is interesting as a black-box model for a class of classical dynamic programming26

strategies including the one that is usually used for the well-known edit distance problem. We also27

show a generalization of this result to more than 2 dimensions.28

2012 ACM Subject Classification Theory of computation → Quantum query complexity29

Keywords and phrases Quantum query complexity, Quantum algorithms, Dyck language, Grid path30

Funding Supported by QuantERA ERA-NET Cofund in Quantum Technologies implemented31

within the European Union’s Horizon 2020 Programme (QuantAlgo project) and ERDF project32

1.1.1.5/18/A/020 “Quantum algorithms: from complexity theory to experiment”. The research was33

funded by the subsidy allocated to Kazan Federal University for the state assignment in the sphere34

of scientific activities.35

1 Introduction36

We study the quantum query complexity of two problems:37

Quantum complexity of regular languages. Consider the problem of recognizing38

whether an n-bit string belongs to a given regular language. This models a variety of39

computational tasks that can be described by regular languages. In the quantum case, the40

most commonly used model for studying the complexity of various problems is the query41

model. For this setting, Aaronson, Grier and Schaeffer [1] recently showed that any regular42

language L has one of three possible quantum query complexities on inputs of length n: Θ(1)43

if the language can be decided by looking at O(1) first or last symbols of the word; Θ̃(
√
n) if44

2 Quantum Lower and Upper Bounds for 2D-Grid and Dyck Language

the best way to decide L is Grover’s search (for example, for the language consisting of all45

words containing at least one letter a); Θ(n) for languages in which we can embed counting46

modulo some number p which has quantum query complexity Θ(n).47

As shown in [1], a regular language being of complexity Õ(
√
n) (which includes the first48

two cases above) is equivalent to it being star-free. Star-free languages are defined as the49

languages which have regular expressions not containing the Kleene star (if it is allowed to50

use the complement operation). Star-free languages are one of the most commonly studied51

subclasses of regular languages and there are many equivalent characterizations of them.52

One of the star-free languages mentioned in [1] is the Dyck language (with one type of53

parenthesis) with a constant bounded height. The Dyck language is the set of balanced54

strings of parentheses (and). The language is a fundamental example of a context-free55

language that is not regular. If at no point the number of opening parentheses exceeds the56

number of closing parentheses by more than k, we denote the problem of determining if an57

input of length n belongs to this language by Dyckk,n. When more types of parenthesis58

are allowed, the famous Chomsky–Schützenberger representation theorem shows that any59

context-free language is the homomorphic image of the intersection of a Dyck language and60

a regular language.61

Our results. We show that an exponential dependence of the complexity on k is62

unavoidable. Namely, for the balanced parentheses language, we have63

there exists c > 1 such that, for all k ≤ logn, the quantum query complexity is Ω(ck
√
n);64

If k = c logn for an appropriate constant c, the quantum query complexity is Ω(n1−ε).65

Thus, the exponential dependence on k is unavoidable and distinguishing sequences of66

balanced parentheses of length n and depth logn is almost as hard as distinguishing sequences67

of length n and arbitrary depth.68

Similar lower bounds have recently been independently proven by Buhrman et al. [7].69

Additionally, we give an explicit algorithm (see Theorem 3) for the decision problem70

Dyckk,n with O
(√
n(logn)0.5k) quantum queries. The algorithm also works when k is not a71

constant and is better than the trivial upper bound of n when k = o
(

log(n)
log logn

)
.72

Finding paths on a grid. The second problem that we consider is graph connectivity73

on subgraphs of the 2D grid. Consider a 2D grid with vertices (i, j), i ∈ {0, 1, . . . , n}, j ∈74

{0, 1, . . . , k} and edges from (i, j) to (i+ 1, j) and (i, j + 1). The grid can be either directed75

(with edges in the directions of increasing coordinates) or undirected. We are given an76

unknown subgraph G of the 2D grid and we can perform queries to variables xu (where u77

is an edge of the grid) defined by xu = 1 if u belongs to G and 0 otherwise. The task is to78

determine whether G contains a path from (0, 0) to (n, k).79

Our interest in this problem is driven by the edit distance problem. In the edit distance80

problem, we are given two strings x and y and have to determine the smallest number of81

operations (replacing one symbol by another, removing a symbol or inserting a new symbol)82

with which one can transform x to y. If |x| ≤ n, |y| ≤ k, the edit distance is solvable in83

time O(nk) by dynamic programming [16]. If n = k then, under the strong exponential time84

hypothesis (SETH), there is no classical algorithm computing edit distance in time O(n2−ε)85

for ε > 0 [4] and the dynamic programming algorithm is essentially optimal.86

However, SETH does not apply to quantum algorithms. Namely, SETH asserts that there87

is no algorithm for general instances of SAT that is substantially better than naive search.88

Quantumly, a simple use of Grover’s search gives a quadratic advantage over naive search.89

This leads to the question: can this quadratic advantage be extended to edit distance (and90

other problems that have lower bounds based on SETH)?91

A. Ambainis et al. 3

Since edit distance is quite important in classical algorithms, the question about its92

quantum complexity has attracted a substantial interest from various researchers. Boroujeni93

et al. [6] invented a better-than-classical quantum algorithm for approximating the edit94

distance which was later superseded by a better classical algorithm of [8]. However, there95

has been no quantum algorithms computing the edit distance exactly (which is the most96

important case).97

The main idea of the classical algorithm for edit distance is as follows:98

We construct a weighted version of the directed 2D grid (with edge weights 0 and 1) that99

encodes the edit distance problem for strings x and y, with the edit distance being equal100

to the length of the shortest directed path from (0, 0) to (n, k).101

We solve the shortest path problem on this graph and obtain the edit distance.102

As a first step, we can study the question of whether the shortest path is of length 0 or more103

than 0. Then, we can view edges of length 0 as present and edges of length 1 as absent. The104

question “Is there a path of length of 0?” then becomes “Is there a path from (0, 0) to (n, k)105

in which all edges are present?”. A lower bound for this problem would imply a similar lower106

bound for the shortest path problem and a quantum algorithm for it may contain ideas that107

would be useful for a shortest path quantum algorithm.108

Our results. We use our lower bound on the balanced parentheses language to show an109

Ω(n1.5−ε) lower bound for the connectivity problem on the directed 2D grid. This shows a110

limit on quantum algorithms for finding edit distance through the reduction to shortest paths.111

More generally, for an n× k grid (n > k), our proof gives a lower bound of Ω((
√
nk)1−ε).112

The trivial upper bound is O(nk) queries, since there are O(nk) variables. There is113

no nontrivial quantum algorithm, except for the case when k is very small. Then, the114

connectivity problem can be solved with O(
√
n logk n) quantum queries [11] 1 but this bound115

becomes trivial already for k = Ω(logn
log logn).116

For the undirected 2D grid, we show a lower bound of Ω((nk)1−ε), whenever k ≥ logn.117

Thus, the naive algorithm is almost optimal in this case. We also extend both of these118

results to higher dimensions, obtaining a lower bound of Ω((n1n2 . . . nd)1−ε) for an undirected119

n1 × n2 × . . .× nd grid in d dimensions and a lower bound of Ω(n(d+1)/2−ε) for a directed120

n× n× . . .× n grid in d dimensions.121

In a recent work, an Ω(n1.5) lower bound for edit distance was shown by Buhrman et al.122

[7], assuming a quantum version of the Strong Exponential Time hypothesis (QSETH). As123

part of this result they give an Ω(n1.5) query lower bound for a different path problem on a124

2D grid. Then QSETH is invoked to prove that no quantum algorithm can be faster than125

the best algorithm for this shortest path problem. Neither of the two results follow directly126

one from another, as different shortest path problems are used.127

2 Definitions128

For a word x ∈ Σ∗ and a symbol a ∈ Σ, let |x|a be the number of occurrences of a in x.129

For two (possibly partial) Boolean functions g : G → {0, 1}, where G ⊆ {0, 1}n, and130

h : H → {0, 1}, where H ⊆ {0, 1}m, we define the composed function g ◦ h : D → {0, 1},131

with D ⊆ {0, 1}nm, as (g ◦ h)(x) = g
(
h(x1, . . . , xm), . . . , h(x(n−1)m+1, . . . , xnm)

)
. Given a132

Boolean function f and a nonnegative integer d, we define fd recursively as f iterated d133

times: fd = f ◦ fd−1 with f1 = f .134

1 Aaronson et al. [1] also give a bound of O(
√

n logm−1 n) but in this case m is the rank of the syntactic
monoid which can be exponentially larger than k.

4 Quantum Lower and Upper Bounds for 2D-Grid and Dyck Language

Quantum query model. We use the standard form of the quantum query model. Let135

f : D → {0, 1}, D ⊆ {0, 1}n be an n variable function we wish to compute on an input x ∈ D.136

We have an oracle access to the input x — it is realized by a specific unitary transformation137

usually defined as |i〉|z〉|w〉 → |i〉|z + xi (mod 2)〉|w〉 where the |i〉 register indicates the138

index of the variable we are querying, |z〉 is the output register, and |w〉 is some auxiliary139

work-space. An algorithm in the query model consists of alternating applications of arbitrary140

unitaries independent of the input and the query unitary, and a measurement in the end.141

The smallest number of queries for an algorithm that outputs f(x) with probability ≥ 2
3 on142

all x is called the quantum query complexity of the function f and is denoted by Q(f).143

Let a symmetric matrix Γ be called an adversary matrix for f if the rows and columns of144

Γ are indexed by inputs x ∈ D and Γxy = 0 if f(x) = f(y). Let Γ(i) be a similarly sized matrix145

such that Γ(i)
xy =

{
Γxy if xi 6= yi

0 otherwise
. Then letAdv±(f) = max

Γ - an adversary matrix for f

‖Γ‖
maxi ‖Γ(i)‖

146

be called the adversary bound and let Adv(f) = max
Γ - an adversary matrix for f

Γ - nonnegative

‖Γ‖
maxi ‖Γ(i)‖

be147

called the positive adversary bound. The following facts will be relevant for us: Adv(f) ≤148

Adv±(f); Q(f) = Θ(Adv±(f)) [14]; Adv± composes exactly even for partial Boolean func-149

tions f and g, meaning, Adv±(f ◦ g) = Adv±(f) ·Adv±(g) [10, Lemma 6]150

Reductions. We will say that a Boolean function f is reducible to g and denote it by151

f 6 g if there exists an algorithm that given an oracle Ox for an input of f transforms it into152

an oracle Oy for g using at most O(1) calls of oracle Ox such that f(x) can be computed153

from g(y). Therefore, from f 6 g we conclude that Q(f) ≤ Q(g) because one can compute154

f(x) using the algorithm for g(y) and the reduction algorithm that maps x to y.155

Dyck languages of bounded depth. Let Σ be an alphabet consisting of two symbols:156

(and). The Dyck language L consists of all x ∈ Σ∗ that represent a correct sequence of157

opening and closing parentheses. We consider languages Lk consisting of all words x ∈ L158

where the number of opening parentheses that are not closed yet never exceeds k. The159

language Lk corresponds to a query problem Dyckk,n(x1, ..., xn) where x1, . . . , xn ∈ {0, 1}160

describe a word of length n in the natural way: the ith symbol of x is (if xi = 0 and) if xi = 1.161

Dyckk,n(x) = 1 iff the word x belongs to Lk. For all x ∈ {0, 1}n, we define f(x) = |x|0−|x|1,162

we call it the balance. We define a +k-substring (resp. −k-substring) as a substring whose163

balance is equal to k (resp. equal to −k). A ±k−substring is a substring whose balance is164

equal to k in absolute value. For all 0 ≤ i ≤ j ≤ n− 1, we define x[i, j] = xi, xi+1, · · · , xj .165

Finally, we define h(x) = max0≤i≤n−1 f(x[0, i]) and h−(x) = min0≤i≤n−1 f(x[0, i]). A166

substring x[i, j] is minimal if it does not contain a substring x[i′, j′] such that (i, j) 6= (i′, j′),167

and f(x[i′, j′]) = f(x[i, j]).168

Connectivity on a directed 2D grid. Let Gn,k be a directed version of an n× k grid169

in two dimensions, with vertices (i, j), i ∈ [n], j ∈ [k] and directed edges from (i, j) to (i+1, j)170

(if i < n) and from (i, j) to (i, j+1) (if j < k). If G is a subgraph of Gn,k, we can describe it by171

variables xe corresponding to edges e of Gn,k: xe = 1 if the edge e belongs to G and xe = 0 oth-172

erwise. We consider a problem Directed-2D-Connectivity in which one has to determine173

if G contains a path from (0, 0) to (n, k): Directed-2D-Connectivityn,k(x1, . . . , xm) = 1174

(where m is the number of edges in Gn,k) iff such a path exists.175

Connectivity on an undirected 2D grid. Let Gn,k be an undirected n× k grid and176

let G be a subgraph of Gn,k. We describe G by variables xe in a similar way and define177

Undirected-2D-Connectivityn,k(x1, . . . , xm) = 1 iff G contains a path from (0, 0) to178

(n, k). We also consider d dimensional versions of these two problems, on n × n × . . . n179

grids (with the grid being of the same length in all the dimensions). In the directed version180

A. Ambainis et al. 5

(Directed-dD-Connectivity), we have a subgraph G of a directed grid (with edges direc-181

ted in the directions from (0, . . . , 0) to (n, . . . , n)) and Directed-dD-Connectivity(x1, . . . , xm) =182

1 iff G contains a directed path from (0, . . . , 0) to (n, . . . , n). The undirected version is defined183

similarly, with an undirected grid instead of a directed one.184

3 A quantum algorithm for membership testing of Dyckk,n185

In this section, we give a quantum algorithm for Dyckk,n(x), where k can be a function of186

n. The general idea is that Dyckk,n(x) = 0 if and only if one of the following conditions187

holds: (i) x contains a +(k + 1)-substring; (ii) x contains a substring x[0, i] such that the188

balance f(x[0, i]) = −1; (iii) the balance of the entire word f(x) 6= 0.189

3.1 ±k-Substring Search algorithm190

The goal of this section is to describe a quantum algorithm which searches for a substring191

x[i, j] that has a balance f(x[i, j]) ∈ {+k,−k} for some integer k. Throughout this section,192

we find and consider only minimal substrings. A substring is minimal if it does not contain193

a proper substring with the same balance. Throughout this section we use the following194

easily verifiable facts:195

For any two minimal ±k-substrings x[i, j] and x[k, l]: i < k =⇒ j < l. This induces a196

natural linear order among all ±k-substrings according to their starting (or, equivalently,197

ending) positions.198

Minimal +k-substrings do not intersect with minimal −k-substrings.199

If x[l1, r1] and x[l2, r2] with l1 < l2 are two consecutive minimal (k − 1)-substrings and200

their signs are the same, then x[l1, r2] is a k-substring with this sign.201

This algorithm is the basis of our algorithms for Dyckk,n. The algorithm works in a recursive202

way. It searches for two consecutive minimal ±(k − 1)-substrings x[l1, r1] and x[l2, r2] such203

that they either overlap or there are no ±(k− 1)-substrings between them. If both substrings204

x[l1, r1] and x[l2, r2] are +(k− 1)-substrings, then we get a minimal +k-substring in total. If205

both substrings are −(k − 1)-substrings, then we get a minimal −k-substring in total.206

We first discuss three building blocks for our algorithm. The first one is FindAtLeftmostk(l, r, t, d, s)207

and accepts as inputs: the borders l and r, where l and r are integers such that 0 ≤ l ≤ r ≤208

n− 1; a position t ∈ {l, . . . , r}; a maximal length d for the substring, where d is an integer209

such that 0 < d ≤ r− l+ 1; the sign of the balance s ⊆ {+1,−1}. +1 is used for searching for210

a +k-substring, −1 is used for searching for a −k-substring, {+1,−1} is used for searching211

for both. It outputs a triple (i, j, σ) such that t ∈ [i, j], j − i+ 1 ≤ d, f(x[i, j]) ∈ {+k,−k}212

and σ = sign(f(x[i, j])) ∈ s. The substring should be the leftmost one that contains t, i.e.213

there is no other minimal x[i′, j′] such that i′ < i, t ∈ [i′, j′], f(x[i′, j′]) = f(x[i, j]). If no214

such substrings have been found, the algorithm returns NULL.215

The second one is FindAtRightmostk. It is similar to the FindAtLeftmostk, but216

finds the rightmost ±k-substring, i.e. there is no other minimal x[i′, j′] such that j′ > j,217

t ∈ [i′, j′], f(x[i′, j′]) = f(x[i, j])218

The third one is FindFirstk(l, r, s, direction) and accepts as inputs: the borders l and r,219

where l and r are integers such that 0 ≤ l ≤ r ≤ n− 1; the sign of the balance s ⊆ {+1,−1}.220

a direction ∈ {left, right}. When the direction is right (respectively left), FindFirstk finds221

the first ±k-substring from the left to the right (respectively from the right to the left) in222

[l, r] of sign s.223

These three building blocks are interdependent since FindAtLeftmostk uses FindFirstk−1224

and FindAtRightmostk−1 as subroutines, FindFirstk uses FindAtLeftmostk and225

6 Quantum Lower and Upper Bounds for 2D-Grid and Dyck Language

FindAtRightmostk as subroutines. A description of FindAtLeftmostk(l, r, t, d, s) fol-226

lows. The algorithm is presented in Appendix A. The description of FindAtRightmostk(l, r, t, d, s)227

is similar and is omitted.228

When k = 2, the procedure FindAtLeftmost2(l, r, t, d, s) checks that xt = xt−1 and229

sign(f(x[t− 1, t])) ∈ s. If yes, it has found the substring. Otherwise, it checks if xt = xt+1230

and sign(f(x[t, t+ 1])) ∈ s. If both checks fail, the procedure returns NULL. For k > 2 the231

procedure is the following.232

Step 1. Check whether t is inside a ±(k − 1)-substring of length at most d− 1, i.e.233

v = (i, j, σ)← FindAtLeftmostk−1(l, r, t, d−1, {+1,−1}). If v 6= NULL, then (i1, j1, σ1)←234

(i, j, σ) and the algorithm goes to Step 2. Otherwise, the algorithm goes to Step 6.235

Step 2. Check whether i1−1 is inside a ±(k−1)-substring of length at most d−1 and choose236

the rightmost one: v = (i, j, σ)← FindAtRightmostk−1(l, r, i1 − 1, d− 1, {+1,−1}).237

If v = NULL, then the algorithm goes to Step 3. If v 6= NULL and σ = σ1, then238

(i2, j2, σ2)← (i, j, σ) and go to Step 8. Otherwise, go to Step 4.239

Step 3. Search for the first ±(k − 1)-substring on the left from i1 − 1 at distance at most d,240

i.e. v = (i, j, σ)← FindFirstk−1(min(l, j1−d+ 1), i1−1), {+1,−1}, left). If v 6= NULL241

and σ1 = σ, then (i2, j2, σ2)← (i, j, σ) and go to Step 8. Otherwise, go to Step 4.242

Step 4. Check whether j1 + 1 is inside a ±(k − 1)-substring of length at most d− 1, i.e.243

v = (i, j, σ)← FindAtLeftmostk−1(l, r, j1 + 1, d− 1, {+1,−1}).244

If v 6= NULL, then (i2, j2, σ2)← (i, j, σ) and go to Step 8. Otherwise, go to Step 5.245

Step 5. Search for the first ±(k − 1)-substring on the right from j1 + 1 at distance at most246

d, i.e. v = (i, j, σ)← FindFirstk−1(j1 + 1,min(i1 + d− 1, r), {+1,−1}, right).247

If v 6= NULL, then (i2, j2, σ2)← (i, j, σ), then go to Step 8. Otherwise, return NULL.248

Step 6. Search for the first ±(k − 1)-substring on the right at distance at most d from t, i.e.249

v = (i, j, σ)← FindFirstk−1(t,min(t+ d− 1, r), {+1,−1}, right)250

If v 6= NULL, then (i1, j1, σ1)← (i, j, σ) and go to Step 7. Otherwise, returns NULL.251

Step 7. Search for the first ±(k − 1)-substring on the left from t at distance at most d, i.e.252

v = (i, j, σ)← FindFirstk−1(max(l, t− d+ 1), t), {+1,−1}, left)253

If v 6= NULL, then (i2, j2, σ2)← (i, j, σ) and go to Step 8. Otherwise, returns NULL.254

Step 8. If σ1 = σ2, σ1 ∈ s and max(j1, j2)−min(i1, i2)+1 ≤ d , output (min(i1, i2),max(j1, j2), σ1),255

otherwise return NULL.256

By construction and induction on k, the two ±(k − 1)-substrings x[i1, j1] and x[i2, j2]257

(if they exist) involved in the procedure FindAtLeftmostk are always consecutive and258

minimal. FindAtLeftmostk thus returns a ±k-substring, if both substrings have the same259

sign.260

Using this basic procedure, we then search for a ±k−substring by searching for a t and261

d such that FindAtLeftmostk(l, r, t, d, s) returns a non-NULL value. Unfortunately, our262

algorithms have two-sided bounded error: they can, with small probability, return NULL263

even if a substring exists or return a wrong substring instead of NULL. In this setting,264

Grover’s search algorithm is not directly applicable and we need to use a more sophisticated265

search [9]. Furthermore, simply applying the search algorithm naively does not give the right266

complexity. Indeed, if we search for a substring of length roughly d (say between d and 2d),267

we can find one with expected running time O(
√

(r − l)/d) because at least d values of t268

will work. On the other hand, if there are no such substrings, the expected running time269

will be O(
√
r − l). Intuitively, we can do better because if there is a substring of length at270

least d then there are at least d values of t that work. Hence, we only need to distinguish271

between no solutions, or at least d. This allows to stop the Grover iteration early and make272

O(
√

(r − l)/d) queries in all cases.273

A. Ambainis et al. 7

I Lemma 1 (Modified from [9], Appendix B). Given n algorithms, quantum or classical, each274

computing some bit-value with bounded error probability, and some T > 1, there is a quantum275

algorithm that uses O(
√
n/T) queries and with constant probability: returns the index of276

a “1”, if there are at least T “1s” among the n values; returns NULL if there are no “1”;277

returns anything otherwise.278

The algorithm that uses above ideas is presented in Algorithm 1.279

Algorithm 1 FindFixedLenk(l, r, d, s). Search for any ±k-substring of length ∈ [d/2, d]

Find t such that vt ← FindAtLeftmostk(l, r, t, d, s) 6= NULL using Lemma 1 with
T = d/2.
return vt or NULL if none.

We can then write an algorithm FindAnyk(l, r, s) that searches for any ±k-substring. We280

consider a randomized algorithm that uniformly chooses a of power 2 from [2dlog2 ke, (r − l)],281

i.e. d ∈ {2dlog2 ke, 2dlog2 ke+1, . . . , 2dlog2(r−l)e}. For the chosen d, we run Algorithm 1. So, the282

algorithm will succeed with probability at least O(1/ log(r − l)). We can apply Amplitude283

amplification and ideas from Lemma 1 to this and get an algorithm that uses O(
√

log(r − l))284

iterations.285

Algorithm 2 FindAnyk(l, r, s). Search for any ±k-substring.

Find d ∈ {2dlog2 ke, 2dlog2 ke+1, . . . , 2dlog2(r−l)e} such that:
vd ← FindFixedLenk(l, r, d, s) 6= NULL using amplitude amplification.
return vd or NULL if none.

Finally, we present the algorithm that finds the first ±k-substring – FindFirstk. Let286

us consider the case direction = right. We first find the smallest segment from the left to287

the right such that its length w is a power of 2 and it contains a ±k-substring. We do so by288

doubling the length of the segment until we find a ±k-substring. We now have a segment289

that contains a ±k-substring and we want to find the leftmost one. We do so by the following290

variant of binary search. At each step let mid = b(lBorder + rBorder)/2c be the middle of291

the search segment [lBorder, rBorder]. There are three cases:292

There is a k-substring in [lBorder,mid], then the leftmost k-substring is in this segment.293

There are no k-substrings in [lBorder,mid], but mid is inside a k-substring. Then the294

leftmost k-substring that contains mid is the required substring.295

There are no k-substrings in [lBorder,mid] and mid is not inside a k-substring. Then296

the required substring is in [mid+ 1, rBorder].297

Each iteration of the loop the algorithm halves the search space or finds the first k-298

substring itself if it contains mid. If direction = left, we replace FindAtLeftmostk299

by FindAtRightmostk that finds the rightmost ±k-substring that containts mid. A300

detailed description of this algorithm is presented in Appendix C.301

I Proposition 2. For any ε > 0 and k, algorithms FindAtLeftmostk, FindFixedLenk,302

FindAnyk and FindFirstk have two-sided error probability ε < 0.5 and return, when303

correct:304

If t is inside a ±k−substring of sign s of length at most d in x[l, r], then FindAtLeftmostk305

will return such a substring, otherwise it returns NULL. The running time is O(
√
d(log(r−306

l))0.5(k−2)).307

8 Quantum Lower and Upper Bounds for 2D-Grid and Dyck Language

FindFixedLenk either returns a ±k−substring of sign s and length at most d in x[l, r], or308

NULL. It is only guaranteed to return a substring if there exists ±k−substring of length at309

least d/2, otherwise it can return NULL. The running time is O(
√
r − l(log(r−l))0.5(k−2)).310

FindAnyk returns any ±k−substring of sign s in x[l, r], otherwise it returns NULL. The311

running time is O(
√
r − l(log(r − l))0.5(k−1)).312

FindFirstk returns the first ±k−substring of sign s in x[l, r] in the specified direction,313

otherwise it returns NULL. The running time is O(
√
r − l(log(r − l))0.5(k−1)).314

Proof. We prove the result by induction on k. The base case of k = 2 is obvious because of315

simplicity of FindAtLeftmost2 and FindAtRightmost2 procedures. We first prove the316

correctness of all the algorithms, assuming there are no errors. At the end we explain how to317

deal with the errors.318

We start with FindAtLeftmostk: there are different cases to be considered when319

searching for a +k-substring x[i, j] of length ≤ d.320

1. Assume that there are j1 and i2 such that i < j1 < i2 < j, |f(x[i, j1])| = |f(x[i2, j])| = k−1321

and sign(f(x[i, j1])) = sign(f(x[i2, j])) ∈ s. If t ∈ {i2, . . . , j}, then the algorithm finds322

x[i2, j] in Step 1 and the first invocation of FindFirstk−1 in Step 3 finds x[i, j1]. If323

t ∈ {i, . . . , j1}, then the algorithm finds x[i, j1] in Step 1 and the second invocation324

of FindFirstk−1 in Step 5 finds x[i2, j]. If j1 < t < i2, then the third invocation of325

FindFirstk−1 in Step 6 finds x[i2, j] and the forth invocation of FindFirstk−1 in Step326

7 finds x[i, j1].327

2. Assume that there are j1 and i2 such that i < i2 < j1 < j, |f(x[i, j1])| = |f(x[i2, j])| = k−1328

and sign(f(x[i, j1])) = sign(f(x[i2, j])) ∈ s. If t ∈ {i, . . . , j1}, then the algorithm finds329

x[i, j1] in Step 1. After that, it finds x[i2, j] in Step 4. If t ∈ {j1 + 1, . . . , j}, then the330

algorithm finds x[i2, j] in Step 1. After that, it finds x[i, j1] in Step 2.331

By induction, the running time of each FindAtLeftmostk−1 invocation is O(
√
d(log(r −332

l))0.5(k−3)), and the running time of each FindFirstk−1 invocation isO(
√
d(log(r−l))0.5(k−2)).333

We now look at FindFixedLenk: by construction and definition of FindAtLeftmostk,334

if the algorithm returns a value, it is a valid substring (with high probability). If there exists335

a substring of length at least d/2, then any query to FindAtLeftmostk with a value of t336

in this interval will succeed, hence there are at least d/2 solutions. Therefore, by Lemma 1,337

the algorithm will find one with high probability and make O
(√

r−l
d/2

)
queries. Each query338

has complexity O(
√
d(log(r − l))0.5(k−2)) by the previous paragraph, hence the running time339

is bounded by O(
√
r − l(log(r − l)0.5(k−2)).340

We can now analyze FindAnyk: Assume that the shortest ±k-substring x[i, j] is of341

length g = j − i+ 1. Therefore, there is a d such that d ≤ g ≤ 2d and the FindFixedLenk342

procedure returns a substring for this d with constant success probability. So, the success343

probability of the randomized algorithm is at least O(1/ log(l− r)). Therefore, the amplitude344

amplification does O(
√

log(r − l)) iterations. The running time of FindFixedLenk is345

O(
√
r − l(log(r− l))0.5(k−2)) by induction, hence the total running time is O(

√
r − l(log(r−346

l))0.5(k−2)
√

log(l − r)) = O(
√
r − l(log(r − l))0.5(k−1)).347

Finally, we analyze FindFirstk: See Appendix C.348

We now turn to error analysis. The case of FindAtLeftmostk is easy: the al-349

gorithm makes at most 5 recursive calls, each having a success probability of 1− ε. Hence it350

will succeed with probability (1− ε)5. We can boost this probability to 1− ε by repeating351

this algorithm a constant number of times. Note that this constant depends on ε.352

The analysis of FindFixedLenk follows directly from [9] and Lemma 1: since FindAtLeftmostk353

has two-sided error ε, there exists a search algorithm with two-sided error ε. J354

A. Ambainis et al. 9

3.2 The Algorithm for Dyckk,n355

To solve Dyckk,n, we modify the input x. As the new input we use x′ = 1kx0k. Dyckk,n(x) =356

1 iff there are no ±(k + 1)-substrings in x′. This idea is presented in Algorithm 3.

Algorithm 3 Dyckk,n(). The Quantum Algorithm for Dyckk,n.

x← 1kx0k
v = FindAny(k+1)(0, n+ 2k − 1, {+1,−1})
return v == NULL

357

I Theorem 3 (Appendix D). Algorithm 3 solves Dyckk,n and the running time of Algorithm358

3 is O(
√
n(logn)0.5k). The algorithm has two-side error probability ε < 0.5.359

4 Lower bounds for Dyck languages360

I Theorem 4. There exist constants c1, c2 > 0 such that Q
(

Dyckc1`m,c2(2m)`
)

= Ω
(
m`
)
.361

Proof. We will use the partial Boolean function Exa|bm =
{

1, if |x|0 = a

0, if |x|0 = b.
362

We prove the theorem by a reduction
(

Exm|m+1
2m

)`
6 Dyckc1`m,c2(2m)` , with the reduc-363

tion described in appendix E. It is known that Adv±
(

Exm|m+1
2m

)
≥ Adv

(
Exm|m+1

2m

)
> m364

[2, Theorem 5.4]. The Adversary bound composes even for partial Boolean functions [10,365

Lemma 1], therefore Q
((

Exm|m+1
2m

)`)
= Ω

(
m`
)
. Via the reduction the same bound applies366

to Dyckc1`m,c2(2m)` . J367

I Theorem 5. For any ε > 0, there exists c > 0 such that Q(Dyckc logn,n) = Ω
(
n1−ε).368

Proof. For any ε > 0, there exists an m such that Adv±
(

Exm|m+1
2m

)
≥ (2m)1−ε. Without369

loss of generality we may assume that (2m)` = n. From Theorem 4 with ` = log2m n370

we obtain c2(2m)` = c2n and height c1m` = Θ(logn). The query complexity is at least371 (
(2m)1−ε

)`
=
(

(2m)`
)1−ε

= n1−ε. Therefore Q(Dyckc logn,n) = Ω
(
n1−ε). J372

For constant depths the following bound can be derived:373

I Theorem 6. There exists a constant c1 > 0 such that Q(Dyckc1`,n) = Ω(2 `2
√
n).374

Proof. Let m = 4 in the Theorem 4. Then, Q
(
Dyckc1`,c28`

)
= Ω

(
4`
)
for some constants375

c1, c2 > 0. Consider the function And n

c28`
◦Dyckc1`,c28` with a promise that Andk has as an376

input either k or k−1 ones. The query complexity of this function is Ω
(√

n
c28` 4`

)
= Ω(2 `2

√
n).377

The computation of the composition And n

c28`
◦Dyckc1`,c28` can be straightforwardly reduced378

to Dyckc1`,n by a simple concatenation of Dyckc1`,c28` instances. J379

5 Quantum complexity of st-Connectivity in grids380

5.1 Quantum complexity of Directed-2D-Connectivityn,k381

I Theorem 7. For any n ≥ k and ε > 0, Q(Directed-2D-Connectivityn,k) = Ω
(
(
√
nk)1−ε).382

10 Quantum Lower and Upper Bounds for 2D-Grid and Dyck Language

(()) ((()) ())

x

y y = d = 4

(0, 0)

Figure 1 Representation of the Dyck word “(())((())())”

In particular, if we have a square grid then383

I Corollary 1. For any ε > 0, Q(Directed-2D-Connectivityn,n) = Ω
(
n1.5−ε).384

Proof of Theorem 7. For any sequence w of m opening and closing parentheses it is possible385

to plot the changes of depth, i.e., the number of opening parentheses minus the number386

of closing parentheses, for all prefixes of the sequence, see Figure 1. We can connect387

neighboring points by vectors (1, 1) and (1,−1) corresponding to opening and closing388

parentheses respectively. Clearly w ∈ Ld if and only if the path starting at the origin (0, 0)389

ends at (m, 0) and never crosses y = 0 and y = d. Consequently a path corresponding to390

w ∈ Ld always remains within the trapezoid bounded by y = 0, y = d, y = x, y = −x+m.391

This suggests a way of mapping Dyckd,m to the Directed-2D-Connectivityn,k problem:392

1. An opening parenthesis in position i corresponds
to a “column” of upwards sloping available edges
(i − 1, l) → (i, l + 1) for all l ∈ {0, 1, . . . , d − 1}
such that i− 1 + l is even. A closing parenthesis
in position i corresponds to downwards sloping
available edges (i − 1, l) → (i, l − 1) for all l ∈
{1, . . . , d} such that i− 1 + l is even. See Figure 2.

2. The edges outside the trapezoid adjacent to the
trapezoid are forbidden (see Figure 3), i.e., it is
sufficient to “insulate” the trapezoid by a single
layer of forbidden edges. The only exception are
the edges adjacent to the (0, 0) and (m, 0) vertex
as those will be used in the construction (step 4).

(=⇒) =⇒

Figure 2 Dyckd,m to Directed-
2D-Connectivity variable mapping

393

3. Rotate the trapezoid by 45 degrees counterclockwise. This isolated trapezoid can be394

embedded in a directed grid and its starting and ending vertices are connected by a path395

if and only if the corresponding input word is valid.396

4. Finally we can lay multiple independent trapezoids side by side and connect them in397

parallel forming an Ort of Dyckd,m instances; see Figure 4.398

This concludes the reduction Ort ◦Dyckd,m 6 Directed-2D-Connectivityn,k, where399

n = (d+ 1)(t− 1) + m
2 + 1 and k = m

2 + 1. By the well known composition result of Reichardt400

[14] we know that Q(Ort ◦Dyckd,m) = Θ(Q(Ort) ·Q(Dyckd,m)). All that remains is to401

pick suitable t, d and m for the proof to be complete. Let k be the vertical dimension of the402

grid and k ≤ n. Then we take m = Θ(k), d = logm and t = n
d . J403

Constructing a non-trivial quantum algorithm appears to be difficult and we conjecture404

that the actual complexity may be Ω(nk), except for the case when k is small, compared to405

A. Ambainis et al. 11

n. For very small k (up to k = Θ(logn
log logn)), a better quantum algorithm is possible.406

I Theorem 8 (Appendix F). Q(Directed-2D-Connectivityn,k) = O

(√
nek
(

1 + log2 n
k

)k)
.407

5.2 Lower bounds for Undirected-2D-Connectivityn,k408

Even though it is possible to use the construction from Section 5.1 to give a lower bound409

of Ω
(
(
√
nk)1−ε) for the undirected case because the paths for each instance of Dyck never410

bifurcate or merge, this lower bound can be further improved to a nearly tight estimate.411

I Theorem 9. For any n ≥ k, k = Ω(logn), ε > 0, Q(Undirected-2D-Connectivityn,k) =412

Ω
(
(nk)1−ε).413

Proof. We start off by representing an input as a path in a trapezoid, see Figure 3. But now414

instead of connecting multiple instances of Dyck in parallel we will embed one long instance415

by folding it when it hits the boundary of the graph. To implement a fold we will use simple416

gadgets depicted in Figure 5.417

This way a Dyck instance of length m and depth logm can be embedded in an n× k418

grid such that nk
logm = Θ(m). Using Theorem 5 we conclude that solving Undirected-2D-419

Connectivityn,k requires at least Ω
(
(nk)1−ε) quantum queries. J420

5.3 Lower bounds for d-dimensional grids421

For undirected d-dimensional grids we give a tight bound on the number of queries required422

to solve connectivity.423

I Theorem 10. For any ε > 0, for undirected d-dimensional grids of size n1 × n2 × . . .× nd424

that are not “almost-one-dimensional”, i.e., there exists i ∈ [d] such that
∏d

j=1
nj

ni
= Ω(logni):425

Q(Undirected-dD-Connectivityn1,n2,...,nd) = Ω((n1 · n2 · . . . · nd)1−ε).426

Proof. This follows from the 2D case by using the fact that a d-dimensional grid of size427

n1×n2× . . .×nd−1×nd contains as a subgraph a (d− 1)-dimensional grid of size n1×n2×428

. . .× nd−2 × nd−1nd. One way to see this is to consider a bijective mapping of the vertices429

(()) ((()) ())

Available edges

Available edges
reachable from origin

Forbidden edges

Figure 3 Mapping of a complete input corresponding to Dyck word “(())((())())” to
Directed-2D-Connectivity

12 Quantum Lower and Upper Bounds for 2D-Grid and Dyck Language

(x1, . . . , xd−1, xd) to (x1, . . . , xd−2, xdnd−1 +xd−1) if xd is even and to (x1, . . . , xd−2, xdnd−1 +430

nd−1 − 1− xd−1) if xd is odd. It is a bijection because xd and xd−1 can be recovered from431

xdnd−1 + nd−1 − 1 − xd−1 by computing the quotient and remainder on division by nd−1.432

One can view this procedure as “folding” where we take layers (vertices corresponding to433

some xd = l) and fold them into the (d − 1)-st dimension alternating the direction of the434

layers depending on the parity of the layer l. J435

For directed d-dimensional grids we can only slightly improve over the n d2 trivial lower bound.436

I Theorem 11. For directed d-dimensional grids of size n1×n2×. . .×nd such that n1 ≤ n2 ≤437

. . . ≤ nd and ε > 0, Q(Directed-dD-Connectivityn1,n2,...,nd) = Ω((nd−1
∏d
i=1 ni)

1
2−ε).438

I Corollary 2. For directed d-dimensional grids of size n× n× . . .× n and ε > 0,439

Q(Directed-dD-Connectivityn,n,...,n) = Ω(n d+1
2 −ε).440

Proof of Theorem 11. For each I ∈ [n1]×[n2]×. . .×[nd−2] we take take a 2-dimensional hard441

instance GI of Directed-2D-Connectivitynd−1,nd having query complexity Ω(n1−ε
d−1n

1
2−ε
d).442

We then connect them in parallel like so:443

Make available the entire (d−2)-dimensional subgrid from (1, 1, . . . , 1, 1, 1) to (n1, n2, . . . , nd−2, 1, 1)444

and similarly the subgrid from (1, 1, . . . , 1, nd−1, nd) to (n1, n2, . . . , nd−2, nd−1, nd);445

For each I ∈ [n1]× [n2]× . . .× [nd−2] embed the instance GI in the subgrid (I, 1, 1) to446

(I, nd−1, nd);447

Forbid all other edges.448

This construction computes Or∏d−2
i=1

ni
◦Directed-2D-Connectivitynd−1,nd whose com-449

plexity is at least Ω(
√∏d−2

i=1 nin
1−ε
d−1n

1
2−ε
d) = Ω((nd−1

∏d
i=1 ni)

1
2−ε). J450

6 Directions for future works451

Some directions for future work are:452

1. Better algorithm/lower bound for the directed 2D grid? Can we find an o(n2)453

query quantum algorithm or improve our lower bound? A nontrivial quantum algorithm454

would be particularly interesting, as it may imply a quantum algorithm for edit distance.455

2. Quantum algorithms for directed connectivity? More generally, can we come up456

with better quantum algorithms for directed connectivity? The span program method457

used by Belovs and Reichardt [5] for the undirected connectivity does not work in the458

Figure 4 Reduction
Ort ◦Dyck 6 Directed-2D-Connectivity

Figure 5 Folding of a long Dyck instance in
an undirected grid

A. Ambainis et al. 13

directed case. As a result, the quantum algorithms for directed connectivity are typically459

based on Grover’s search in various forms, from simply speeding up depth-first/breadth-460

first search to more sophisticated approaches [3]. Developing other methods for directed461

connectivity would be very interesting.462

3. Quantum speedups for dynamic programming. Dynamic programming is a widely463

used algorithmic method for classical algorithms and it would be very interesting to464

speed it up quantumly. This has been the motivating question for both the connectivity465

problem on the directed 2D grid studied in this paper and a similar problem for the466

Boolean hypercube in [3] motivated by algoritms for Travelling Salesman Problem. There467

are many more dynamic programming algorithms and exploring quantum speedups of468

them would be quite interesting.469

References470

1 Scott Aaronson, Daniel Grier, and Luke Schaeffer. A quantum query complexity trichotomy471

for regular languages. Electronic Colloquium on Computational Complexity (ECCC), 26:61,472

2018.473

2 Andris Ambainis. Quantum lower bounds by quantum arguments. Journal of Computer and474

System Sciences, 64(4):750–767, 2002.475

3 Andris Ambainis, Kaspars Balodis, Janis Iraids, Martins Kokainis, Krisjanis Prusis, and476

Jevgenijs Vihrovs. Quantum speedups for exponential-time dynamic programming algorithms.477

In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms,478

SODA 2019, San Diego, California, USA, January 6-9, 2019, pages 1783–1793, 2019. URL:479

https://doi.org/10.1137/1.9781611975482.107, doi:10.1137/1.9781611975482.107.480

4 Arturs Backurs and Piotr Indyk. Edit distance cannot be computed in strongly subquadratic481

time (unless seth is false). In Proceedings of the forty-seventh annual ACM symposium on482

Theory of computing, pages 51–58. ACM, 2015.483

5 Aleksandrs Belovs and Ben W. Reichardt. Span programs and quantum algorithms for st-484

connectivity and claw detection. In Algorithms - ESA 2012 - 20th Annual European Symposium,485

Ljubljana, Slovenia, September 10-12, 2012. Proceedings, pages 193–204, 2012. URL: https:486

//doi.org/10.1007/978-3-642-33090-2_18, doi:10.1007/978-3-642-33090-2_18.487

6 Mahdi Boroujeni, Soheil Ehsani, Mohammad Ghodsi, MohammadTaghi HajiAghayi, and488

Saeed Seddighin. Approximating edit distance in truly subquadratic time: Quantum and489

mapreduce. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete490

Algorithms, pages 1170–1189. SIAM, 2018.491

7 Harry Buhrman, Subhasree Patro, and Florian Speelman. The quantum strong exponential-492

time hypothesis, 2019. arXiv:1911.05686.493

8 Diptarka Chakraborty, Debarati Das, Elazar Goldenberg, Michal Koucký, and Michael E.494

Saks. Approximating edit distance within constant factor in truly sub-quadratic time. In 59th495

Annual IEEE Symposium on Foundations of Computer Science (FOCS), Paris, France, Oct496

7-9, 2018, pages 979–990, 2018. arXiv:1810.03664.497

9 Peter Høyer, Michele Mosca, and Ronald de Wolf. Quantum search on bounded-error inputs.498

In Jos C. M. Baeten, Jan Karel Lenstra, Joachim Parrow, and Gerhard J. Woeginger, editors,499

Automata, Languages and Programming, pages 291–299, Berlin, Heidelberg, 2003. Springer500

Berlin Heidelberg.501

10 Shelby Kimmel. Quantum adversary (upper) bound. In International Colloquium on Automata,502

Languages, and Programming, pages 557–568. Springer, 2012.503

11 Vladislavs Kl,evickis. Čaulu programmas cel,a atrašanai grafā (span programs for finding a504

path in a graph). Undergraduate 3rd year project, University of Latvia, 2017.505

12 Robin Kothari. An optimal quantum algorithm for the oracle identification problem. In 31st506

International Symposium on Theoretical Aspects of Computer Science, page 482, 2014.507

https://doi.org/10.1137/1.9781611975482.107
http://dx.doi.org/10.1137/1.9781611975482.107
https://doi.org/10.1007/978-3-642-33090-2_18
https://doi.org/10.1007/978-3-642-33090-2_18
https://doi.org/10.1007/978-3-642-33090-2_18
http://dx.doi.org/10.1007/978-3-642-33090-2_18
http://arxiv.org/abs/1911.05686
http://arxiv.org/abs/1810.03664

14 Quantum Lower and Upper Bounds for 2D-Grid and Dyck Language

13 C. Y.-Y. Lin and H.-H. Lin. Upper bounds on quantum query complexity inspired by the508

elitzur–vaidman bomb tester. Theory of Computing, 12(18):1–35, 2016.509

14 Ben W. Reichardt. Reflections for quantum query algorithms. In Proceedings of the Twenty-510

second Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’11, pages 560–569,511

Philadelphia, PA, USA, 2011. Society for Industrial and Applied Mathematics. URL: http:512

//dl.acm.org/citation.cfm?id=2133036.2133080.513

15 Ben W. Reichardt. Span programs are equivalent to quantum query algorithms. SIAM514

J. Computing, 43(3):1206–1219, 2014. URL: https://doi.org/10.1137/100792640, doi:515

10.1137/100792640.516

16 Robert A Wagner and Michael J Fischer. The string-to-string correction problem. Journal of517

the ACM (JACM), 21(1):168–173, 1974.518

http://dl.acm.org/citation.cfm?id=2133036.2133080
http://dl.acm.org/citation.cfm?id=2133036.2133080
http://dl.acm.org/citation.cfm?id=2133036.2133080
https://doi.org/10.1137/100792640
http://dx.doi.org/10.1137/100792640
http://dx.doi.org/10.1137/100792640
http://dx.doi.org/10.1137/100792640

A. Ambainis et al. 15

A An Algorithm for the FindAtLeftmostk Subroutine519

Algorithm 4 FindAtLeftmostk(l, r, t, d, s).

v = (i1, j1, σ1)← FindAtLeftmostk−1(l, r, t, d− 1, {+1,−1})
if v 6= NULL then . if t is inside a ±(k − 1)-substring

v′ = (i2, j2, σ2)← FindAtRightmostk−1(l, r, i1 − 1, d− 1, {+1,−1})
if v′ = NULL then

v′ = (i2, j2, σ2)← FindFirstk−1(min(l, j1 − d+ 1), i1 − 1, {+1,−1}, left)
if v′ 6= NULL and σ2 6= σ1 then

v′ ← NULL
if v′ = NULL then

v′ = (i2, j2, σ2)← FindAtLeftmostk−1(l, r, j1 + 1, d− 1, {+1,−1})
if v′ = NULL then

v′ = (i2, j2, σ2)← FindFirstk−1(j1 + 1,min(i1 + d− 1, r), {+1,−1}, right)
if v′ = NULL then

return NULL
else

v = (i1, j1, σ1)← FindFirstk−1(t,min(t+ d− 1, r), {+1,−1}, right)
if v = NULL then

return NULL
v′ = (i2, j2, σ2)← FindFirstk−1(max(l, t− d+ 1), t), {+1,−1}, left)
if v′ = NULL then

return NULL
if σ1 = σ2 and σ ∈ s and max(j1, j2)−min(i1, i2) + 1 ≤ d then

return (min(i1, i2),max(j1, j2), σ1)
else

return NULL

B Proof of Lemma 1520

The main loop of the algorithm of [9] is the following, assuming the algorithms have error at521

most 1/9:522

for m = 0 to dlog9 ne-1 do:523

1. run Am 1000 times,524

2. verify the 1000 measurements, each by O(logn) runs of the corresponding algorithm,525

3. if a solution has been found, then output a solution and stop526

Output ‘no solutions’527

The key of the analysis is that if the (unknown) number t of solutions lies in the interval528

[n/9m+1, n/9m], then Am succeeds with constant probability. In all cases, if there are no529

solutions, Am will never succeeds with high probability (ie the algorithm only applies good530

solutions).531

In our case, we allow the algorithm to return anything (including NULL) if t < T . This532

means that we only care about the values of m such that n/9m > T , that is m 6 log9
n
T .533

Hence, we simply run the algorithm with this new upper bound for d and it will satisfy our534

requirements with constant probability. The complexity is535

16 Quantum Lower and Upper Bounds for 2D-Grid and Dyck Language

blog9
n
T c∑

m=0
1000 ·O(3m) + 1000 ·O(logn) = O(3log9

n
T) = O(

√
n/T).536

C FindFirstk Algorithm’s Description, Complexity and Proof of537

Correctness538

C.1 FindFixedPosk539

Let us first describe a subroutine used by FindFirstk.540

FindFixedPosk(l, r, t, s, left) searches for the leftmost substring x[i, j] such that sign(f(x[i, j])) ∈541

s and |f(x[i, j])| = k, i.e. i ≤ t ≤ j and there is no x[i′, j′] such that i′ ≤ t ≤ j′, i′ < i and542

f(x[i′, j′]) = f(x[i, j]).543

The procedure is similar to FindAnyk. First, we consider a randomized algorithm544

that uniformly chooses d as a power of 2 that is at most r − l. For this d, it runs545

FindAtLeftmostk(l, r, t, d, s) algorithm and searches for a non-NULL result. The probabil-546

ity of getting a correct result is at least O(1/ log(r− l)). Then, we apply the Amplitude ampli-547

fication method and the idea from Lemma 1 that requires O(
√

log(r − l)) iterations. Similarly,548

we find the maximal d that finds a substring. This algorithm also performs O(
√

log(r − l)) it-549

erations due to [13, 12]. The total complexity of the algorithm is O(
√
r − l(log(r− l))0.5(k−1))550

due to the complexity of FindAtLeftmostk.551

I Lemma 12. FindFixedPosk(l, r, t, s, left) returns the leftmost minimal substring x[i, j]552

such that sign(f(x[i, j])) ∈ s or NULL if there is no such substring. The expected running553

time is O(
√
r − l(log(r − l))0.5(k−1)).554

Proof. Let us show by induction that FindAtLeftmostk(l, r, t, d, s) returns the leftmost555

substring x[i, j] such that sign(f(x[i, j])) ∈ s. If k = 2, we check whether xt = xt−1 before556

xt = xt+1.557

Assume that there is another minimal substring x[i′, j′] such that i′ ≤ t ≤ j′, f(x[i, j]) =558

f(x[i′, j′]) and i′ < i.559

1. Assume that there are j1 and i2 such that i < j1 < i2 < j, |f(x[i, j1])| = |f(x[i2, j])| = k−1560

and sign(f(x[i, j1])) = sign(f(x[i2, j])) ∈ s.561

By induction one of the invocations of FindAtLeftmostk−1 or FindFirstk−1 finds562

x[i2, j] and it the leftmost. Therefore, j′ = j. If i′ < i, then x[i′, j′] is not minimal or563

|f(x[i′, j′])| > |f(x[i, j])|, a contradiction.564

2. Assume that there are j1 and i2 such that i < i2 < j1 < j, |f(x[i, j1])| = |f(x[i2, j])| = k−1565

and sign(f(x[i, j1])) = sign(f(x[i2, j])) ∈ s. By induction x[i2, j] is the leftmost ±(k− 1)-566

substring. Therefore, j′ = j. If i′ < i, then x[i′, j′] is not minimal or |f(x[i′, j′])| >567

|f(x[i, j])|, a contradiction.568

If d > r − l the algorithm finds x[i, j]. If d < r − l, the algorithm could find the wrong569

substring (not the leftmost one containing t). So, we should to find the maximal d such570

that FindAtLeftmostk finds a substring. In that case, when we amplify the randomized571

version of the algorithm, we get the required one.572

Searching by Grover’s search for the maximal d requires the same O(
√
r − l) expected573

number of iterations due to [13, 12]. The total complexity of the algorithm is O(
√
r − l(log(r−574

l))0.5(k−1)) due to the complexity of the FindAtLeftmostk procedure. J575

A. Ambainis et al. 17

FindFixedPosk(l, r, t, s, right) searches for the rightmost substring x[i, j] such that576

sign(f(x[i, j])) ∈ s and |f(x[i, j])| = k, i.e. i ≤ t ≤ j and there is no x[i′, j′] such that577

i′ ≤ t ≤ j′, j < j′ and f(x[i′, j′]) = f(x[i, j]).578

The algorithm is similar to FindFixedPosk(l, r, t, s, left), but uses FindAtRightmostk.579

C.2 FindFirstk Algorithm’s Description580

The FindFirstk procedure calls FindLeftFirstk or FindRightFirstk depending on the581

direction. Since both version are essentially symmetric, we only present the search from the582

left below (i.e. when the direction is right). For reasons that become clear in the proof, we583

need to boost the success probability of some calls. We do so by repeating them several584

times and taking the majority: by this we mean that we take the most common answer, and585

return an error in case of a tie.586

Algorithm 5 FindRightFirstk(l, r, s). The algorithm for searching for the first ±k-substring.

lBorder ← l, rBorder ← r

d← 1 . depth of the search
while lBorder + 1 < rBorder do

mid← b(lBorder + rBorder)/2c
vl ← FindAnyk(lBorder,mid, s) . repeat 2d times and take the majority
if vl 6= NULL then

rBorder ← mid

if vl = NULL then
vmid ← FindFixedPosk(lBorder, rBorder,mid, s, left) . majority of 2d runs
if vmid 6= NULL then

v ← vmid
Stop the loop.

if vmid = NULL then
lBorder ← mid+ 1

d← d+ 1
return v

C.3 Proof of Claim on FindFirstk Procedure from Proposition 2587

Let us prove the correctness of the algorithm for direction = right and s = {+1}. The proof588

for other parameters is similar.589

First, we show the correctness of the algorithm assuming there are no errors. The590

algorithm is essentially a binary search. At each step we find the middle of the search591

segment [lBorder, rBorder] that is mid = b(lBorder + rBorder)/2c. There are three592

options.593

There is a k-substring in [lBorder,mid], then the leftmost k-substring is in this segment.594

There are no k-substrings in [lBorder,mid], but mid is inside a k-substring. If we find595

the leftmost substring containing min, it is the required substring.596

There are no k-substrings in [lBorder,mid] and mid is not inside a k-substring. Then597

the required substring is in [mid+ 1, rBorder].598

In each iteration of the loop the algorithm finds a smaller segment containing the leftmost599

k-substring or finds it if it contains mid. We find the k-substring in the iteration that600

18 Quantum Lower and Upper Bounds for 2D-Grid and Dyck Language

corresponds to the [lBorder, rBorder] segment such that (rBorder − lBorder)/2 ≤ j − i or601

earlier.602

Second, we compute complexity of the algorithm (taking into account the repetitions603

and majority votes). The u-th iteration of the loop considers a segment [lBorder, rBorder].604

The length of this segment is at most w · 2−(u−1) where w = r − l. The complexity605

of FindAnyk(lBorder,mid, s) is at most O
(√

w · 2−(u−1)−1
(
log (w · 2−(u−1)−1)

)0.5(k−1)) =606

O
(√

w · 2−(u−1)−1(log (r − l))0.5(k−1)
)
. Also, FindFixedPosk(lBorder, rBorder,mid, s, left)607

has complexityO
(√

w · 2−(u−1)
(
log (w · 2−(u−1))

)0.5(k−1)) = O
(√

w · 2−(u−1)(log (r − l))0.5(k−1)
)
.608

So the total complexity of the u-th iteration is O
(
u
√
w · 2−(u−1)(log (r − l))0.5(k−1)

)
, since at609

the u-th iteration, we repeat each call 2u times to take a majority. The number of iterations610

is at most log2 w. Let us compute the total complexity of the binary search part:611

O

log2 w∑
u=1

2u
√
w · 2−(u−1)(log (r − l))0.5(k−1)

 = O

√w(log (r − l))0.5(k−1)
log2 w∑
u=1

u(
√

2)−(u−1)

612

= O

(
√
w(log (r − l))0.5(k−1)

∞∑
u=0

(u+ 1)(
√

2)−u
)

613

= O

(
√
w(log (r − l))0.5(k−1)

√
22

(
√

2− 1)2

)
614

= O
(√

w(log (r − l))0.5(k−1)
)
.615616

Finally, we need to analyze the success probability of the algorithm: at the uth iteration,617

the algorithm will run each test 2u times and each test has a constant probability of failure618

ε. Hence for the algorithm to fail (that is make a decision that will not lead to the first619

±k-substring) at iteration u, at least half of the 2u runs must fail: this happens with620

probability at most621 (
2u
u

)
εu 6

(
2ue
u

)u
εu 6 (2eε)u.622

Hence the probability that the algorithm fails is bounded by623

log2 w∑
u=1

(2eε)u 6
∞∑
u=1

(2eε)u 6
2eε

1− 2eε .624

By taking ε small enough (say 2eε < 1
3), which is always possible by repeating the calls625

a constant number of times to boost the probability, we can ensure that the algorithm a626

probability of failure less than 1/2.627

D Proof of Theorem 3628

Proof. Let us show that if x′ contains ±(k + 1)-substring then one of three conditions of629

Dyckk,n problem is broken.630

Assume that x′ contains (k+ 1) substring x′[i, j]. If j ≥ k+n, then f(x[i− k, n− 1]) > 0,631

because f(x′[n, j]) = j−n+ 1 ≤ k < k+ 1. Therefore, prefix x[0, i−k] is such that f(x[0, i−632

k− 1]) < 0 or f(x[0, n− 1]) > 0 because f(x[0, n− 1]) = f(x[0, i− k]) + f(x[i− k− 1, n− 1]).633

So, in that case we break one of conditions of Dyckk,n problem.634

A. Ambainis et al. 19

If j < k + n then x[i− k, j − k] is (k + 1) substring of x.635

Assume that x′ contains −(k + 1) substring x′[i, j]. If i < k, then f(x[0, j − k]) < 0,636

because f(x′[i, k − 1]) = −(k − i) ≥ −k > −(k + 1) and f(x[0, j − k]) = f(x′[k, j]) =637

f(x[i, j])− f(x[i, k− 1]). So, in that case the second condition of Dyckk,n problem is broken.638

The complexity of Algorithm 3 is the same as the complexity of FindAnyk+1 for x′ that639

is O(
√
n+ 2k(log(n+ 2k))0.5k) due to Proposition 2.640

We can assume n ≥ 2k (otherwise, we can update k ← n/2). Hence,641

O(
√
n+ 2k(log(n+2k))0.5k) = O(

√
2n(log(2n))0.5k) = O(

√
n(2 logn)0.5k) = O(

√
n(logn)0.5k)642

The error probability is the same as the complexity of FindAnyk+1. J643

E Reduction for the proof of Theorem 4644

Before we describe the reduction in detail, we sketch the main idea. Recall that f(x) =645

|x|0 − |x|1. Note that646

Exm|m+1
2m (x) = 0 ⇐⇒ f(x) = 2647

648

Exm|m+1
2m (x) = 1 ⇐⇒ f(x) = 0649

whereas650

Dyckk,n(x) = 1 ⇐⇒ (max
p – prefix of x

f(p) ≤ k) ∧ (min
p – prefix of x

f(p) ≥ 0) ∧ (f(x) = 0).651

If we could make sure that the minimum and maximum constraints are satisfied, Dyckk,n652

could be used to compute Exm|m+1
2m . To ensure the minimum constraint, we map each 0 to653

00 and 1 to 01. However, this increases f(x) by 2m which can be fixed by appending 12m
654

at the end. Importantly, the resulting sequence x′ has f(x′) = f(x). The first constraint655

(maximum over prefixes) can be fulfilled by having a sufficiently large k; k = 2m+ 3 would656

suffice here. The same idea can be applied iteratively to Exm|m+1
2m where the inputs, which657

could now be the results of functions
(

Exm|m+1
2m

)`−1
= xi, have been recursively mapped to658

sequences x′i with f(x′i) =
{

2 if xi = 0
0 if xi = 1

.659

The reduction formally is as follows.660

We call a string B ∈ {0, 1}w of even length a (w, h)-sized block with width w and height661

h iff for any prefix x of B: 0 ≤ f(x) ≤ h and either f(B) = 0 or f(B) = 2.662

We establish a correspondence between inputs to
(

Exm|m+1
2m

)`
that satisfy the promise663

and (w, h)-sized blocks B for appropriately chosen w, h, so that
(

Exm|m+1
2m

)`
= 1 iff f(B) = 0.664

For l = 0 (the input bits), we have 0 corresponding to a (2, 2)-sized block of 00 and 1 to665

a (2, 2)-sized block of 01.666

For l > 0, let us have input bits x = (x1, x2, . . . , x2m) of Exm|m+1
2m satisfying the input667

promise. Assume that the bits (that could be equal to values of
(

Exm|m+1
2m

)`−1
) correspond668

to (w, h)-sized blocks B1, B2, . . . , B2m. Define the sequence B′ = B1B2 . . . B2m12m. Then it669

is easy to verify the following claims:670

1) B′ is a (2m(w + 1), 2(m+ 1) + h)-sized block;671

20 Quantum Lower and Upper Bounds for 2D-Grid and Dyck Language

2) The output bit of Exm|m+1
2m (x) corresponds to B′ because672

f(B′) =
2m∑
i=1

f(Bi) + f(12m) =
{

2 if Exm|m+1
2m (x) = 0

0 if Exm|m+1
2m (x) = 1

.673

For l = 0, the inputs correspond to (2, 2)-sized blocks. Each level adds 2(m+ 1) to the674

height of the blocks reaching 2 + 2`(m+ 1) = O(m`). The width of blocks reaches O((2m)`).675

Since for all (w, h)-sized blocks B: Dyckh,w(B) = 1 ⇐⇒ f(B) = 0 one can solve the676 (
Exm|m+1

2m

)`
problem by running Dyckh,w on the corresponding block.677

See Figure 6.678

0

m

2m

3m

4m

2m · 6m 2m

Exm|m+1
2m Exm|m+1

2m Exm|m+1
2m

. . .

Exm|m+1
2m Exm|m+1

2m Exm|m+1
2m

Figure 6 The reduction Exm|m+1
2m ◦Exm|m+1

2m 6 Dyck4m+6,12m2+2m. The line of the graph follows
the input word along the x-axis and shows the number of yet-unclosed parenthesis along the y-axis
(i.e., a zoomed-out version of Figure 1). The input word B1B2 . . . B2m12m corresponds to the outer
function Exm|m+1

2m with Bj being a block corresponding to the output of an inner Exm|m+1
2m . The

ticks at the starts and ends of blocks depict that if the line enters the block at height i, it exits at
height i or i + 2. In the block the line never goes below 0 or above h + i. The red dashed part then
forms a new block B′. By replacing the blocks Bj with blocks B′ we can further iterate Exm|m+1

2m

to get the reduction Exm|m+1
2m ◦

(
Exm|m+1

2m

)`−1
6 DyckO(`m),O((2m)`).

F A quantum algorithm for Directed-2D-Connectivityn,k679

In this section, we prove Theorem 8 by constructing a quantum algorithm for Directed-2D-Connectivityn,k.680

The main idea is to construct an AND-OR formula for Directed-2D-Connectivityn,k681

and to use the quantum algorithm for AND-OR formulae by Reichardt [15] which evaluates682

an AND-OR formula of size L with O(
√
L) queries.683

We first deal with the case when n = 2m for some non-negative integer m. The idea for
the construction of the AND-OR formula is to split the grid in two: any path from (0, 0) to
(n, k) must pass through a vertex (n/2, r) for some r : 0 ≤ r ≤ k. For the paths to and from
(n/2, r) we can apply this reasoning recursively. Let us denote by Fµ,κ,i,j our formula for
the path from vertex (i, j) to (i + 2µ, j + κ), and by Lµ,κ its size (the number of variable
instances it has; it does not depend on i, j). Thus we have the recurrent formulae

Fµ,κ,i,j =
κ∨
r=0

(
Fµ−1,r,i,j ∧ Fµ−1,κ−r,i+2µ−1,j+r

)
,

Lµ,κ =
κ∑
r=0

(Lµ−1,r + Lµ−1,κ−r) = 2
κ∑
r=0

Lµ−1,r.

For the base case F0,κ,i,j (i. e. for a 1 × κ grid) we simply use an OR of all the paths684

(represented as an AND of all its edges). There are κ+ 1 paths, each of length κ+ 1, thus685

L0,κ = (κ+ 1)2.686

A. Ambainis et al. 21

It follows by induction on µ that Lµ,κ < 2µ+1 ·
(
κ+µ+2
κ

)
. For the induction basis we have

L0,κ < (κ+ 1)(κ+ 2) = 2
(
κ+2
κ

)
, and for the induction step:

Lµ,κ = 2
κ∑
r=0

Lµ−1,r < 2µ+1
κ∑
r=0

(
r + µ+ 1

r

)
= 2µ+1

(
κ+ µ+ 2

κ

)
.

Using a well-known upper bound for binomial coefficients we obtain: Lm,k < 2m+1(e ·(k+m+687

2)/k)k = O
(
n(e(1 + log2 n

k))k
)
. There exists a quantum algorithm with O(

√
L) queries for a688

formula of size L [15], thus we obtain the complexity mentioned in the theorem statement.689

For an arbitrary n we can find the smallest m for which n ≤ 2m and use the formula for690

the 2m × k grid obtained by adding ancillary edges from the vertex (n, k) to (2m, k) (using691

the edge variables of the added part of the grid as constants). Since the value of n thus692

increases no more than two times, the complexity estimation increases by at most a constant693

multiplier.694

	Introduction
	Definitions
	A quantum algorithm for membership testing of DYCK_{n,k}
	±k-Substring Search algorithm
	The Algorithm for DYCK_{n,k}

	Lower bounds for Dyck languages
	Quantum complexity of st-Connectivity in grids
	Quantum complexity of Directed-2D-Connectivity
	Lower bounds for Undirected-2D-Connectivity
	Lower bounds for d-dimensional grids

	Directions for future works
	References
	An Algorithm for the FindFrom_k Subroutine
	Proof of Lemma 1
	FindFirst_k Algorithm's Description, Complexity and Proof of Correctness
	FidFixedPos_k
	FindFirst_k Algorithm's Description
	Proof of Claim on FindFirst_k Procedure from Proposition 2

	Proof of Theorem 3
	Reduction for the proof of Theorem 4
	A quantum algorithm for Directed-2D-Connectivity

