
Université de Paris

École doctorale 386 Sciences Mathématiques de Paris Centre

Institut de Recherche en Informatique Fondamentale

Classical and Quantum Cryptanalysis for Euclidean Lattices
and Subset Sums

Par: Yixin Shen

Thèse de doctorat d’informatique

Dirigée par Frédéric Magniez

Présentée et soutenue publiquement le 11 Mai 2021

Devant un jury composé de :

Frédéric Magniez CNRS, Université de Paris Directeur
Elham Kashefi CNRS, Sorbonne Université Rapporteuse
Damien Stehlé Ecole Normale Supérieure de Lyon Rapporteur
Léo Ducas Centrum Wiskunde & Informatica Examinateur
Michele Mosca University of Waterloo Examinateur
María Naya-Plasencia Inria de Paris Examinatrice
Simon Perdrix CNRS, Université de Lorraine Examinateur
Jean-Pierre Tillich Inria de Paris Président

To My Mum

Remerciements

Je tiens d’abord à remercier Frédéric Magniez, mon directeur de thèse, qui m’a accompagnée
pendant ces trois dernières années avec beaucoup de patience et de pédagogie. Merci pour tout
le temps que tu m’as consacré malgré ton rôle super occupé de directeur du labo et merci pour
tous les bons conseils que tu m’as donnés. Ces trois dernières années ont été une expérience
très enrichissante scientifiquement et humainement pour moi. J’espère que tu les as appréciées
tout autant que moi.

I would like to thank Elham Kashefi and Damien Stehlé for accepting the heavy task of
reviewing my thesis. A special thank to Damien, who read all the details thoroughly and
found several small issues. I would also like to thank Léo Ducas, Michele Mosca, María
Naya-Plasencia, Simon Perdrix, Jean-Pierre Tillich for accepting to be part of the jury and for
asking a lot of hard but really interesting questions during my defense.

I want to thank my coauthors, especially those with whom I collaborated closely: Divesh
Aggarwal, Xavier Bonnetain, Rémi Bricout, Yanlin Chen, Kamil Khadiev, Rajendra Kumar,
Phong Q. Nguyen and André Schrottenloher. You have been an inspiration to me and I hope
I served as an example to you as much as you have been an example for me. Un remerciement
particulier à André et à Xavier avec qui j’ai passé de bons moments à Shenzhen, en Australie
et à Dagstuhl pendant lesquels on a pu beaucoup discuter de la recherche et d’autres sujets et
tester beaucoup de super bons restaurants.

During my thesis, I had some wonderful occasions to travel around the world and meet new
people. I would like to thank in particular Zhengfeng Ji and Divesh Aggarwal for inviting me
to visit them in Sydney and in Singapore, Claude Crépeau for inviting me to his annual crypto
workshop in Barbados and María Naya-Plasencia for inviting me to the Dagstuhl quantum
cryptanalysis workshop.

J’ai également eu l’occasion, pendant mon stage de master 1 et ma thèse, de passer au
total un an au laboratoire JFLI au Japon. Je remercie Phong Q. Nguyen d’avoir rendu ces
visites possibles qui m’ont permis de découvrir ce pays magnifique et d’apprendre sa langue
et sa riche culture. Je remercie en particulier mes collègues de labo Thomas Silverston et
Vincent Nozick qui m’ont fait découvrir beaucoup d’endroits extraordinaires à Tokyo et qui
m’ont également donné beaucoup de conseils utiles pour ma future carrière de recherche.

Ces années auraient été différentes sans l’ambiance extraordinaire de mon laboratoire IRIF.
Merci à Simona Etinski, Zeinab Galal, Sander Gribling, Alex Grilo, Yassine Hamoudi, Jonas
Landman, Baptiste Louf, Alessandro Luongo, Etienne Mallet, Simon Mauras, Alexandre Nolin,
Ami Paz, Mikaël Rabie, Olivier Stietel, Anupa Sunny, Daniel Szilagyi, Zhouningxin Wang
pour tous les moments sympathiques passés ensemble au coin café du quatrième étage avec ou
sans des jeux de cartes dans les mains.

This thesis would also be less fun if I didn’t encounter all the friends that I met during the

iii

conferences and the summer schools. Nick Spooner, Arjan Cornelissen, Miruna Rosca, Radu
Titiu, Stephan Gocht, Joseph Swernofsky, Christian Majenz, Alexandru Cojocaru, Hamoon
Mousavi, Vitor Pereira, Gilyén András, for each of you I have a story to tell. I hope I can see
all of you again soon in a post Covid world.

Je souhaite également remercier ceux grâce à qui j’ai pris le chemin de la thèse, en particulier
mes professeurs de mathématiques et d’informatique de classe préparatoire Anne-Laure Biolley,
Bernard Randé et Roger Mansuy. Vous m’avez enseigné la rigueur et m’avez fait acquérir une
base scientifique solide indispensable à la réalisation de cette thèse. Grâce à vos passions et
vos empathies, mes premières années seule en France ont également été moins difficiles.

En dehors de la recherche, le badminton a été une partie de ma vie indispensable pour
maintenir mon équilibre mental pendant la thèse. J’ai pu rencontrer beaucoup d’amis au sein
du CPS10 et en dehors. J’aimerais en particulier remercier Ying et Thierry pour les bons
restaurants découverts ensemble, Henri-Frédéric pour de nombreux débats sur la géopolitique
au tour d’un verre sur le quai du canal, même si on n’est pas toujours d’accord. J’aimerais aussi
remercier Isabelle, Alizée, Adèle et Anne-Sophie pour les tournois de badminton remportés
ensemble.

En dehors de tous ces cadres, je remercie Pierre-Cyril Aubin, Cyril Bernard, Xavier
Bonnetain, Dexiong Chen, Ana-Maria Cretu, Christine Finas, Antoine Doche, Shuai Fang,
Arnaud Gallant, Yunzhi Gao, Manuel Gaulhiac, Antony Goh, Jérémy Goh, Amal Hamdani,
Daniel Haziza, Chia-Man Hung, Jade Jiang, Ezékiel Kahn, Houzhi Li, Hugo Marival, Adina
Nedelcu, André Schrottenloher, Maud Szusterman, Xavière de Truchis, Joseph-André Turk,
Bogdan Ursu, Aurélien Velleret, Yang Yu, Yiyang Yu, Xiangpeng Zhang, Alexandre Zhou
pour les amitiés que vous m’avez portées toutes ces années.

Amaury, tu es entré dans ma vie pendant cette thèse. Tu es une inspiration constante qui
me montre quotidiennement comment être un bon chercheur. Merci d’être un oracle si fort
qui me stimule intellectuellement ainsi que de ton aide dans beaucoup de mes travaux. Merci
pour ton soutien dans la vie quotidienne et d’avoir partagé beaucoup de mon stress pendant
cette période pas évidente. Et surtout merci pour ton amour infaillible qui m’a rendu une
meilleure personne. Nous avons encore un long chemin à parcourir ensemble.

Last but not least, I would like to thank Martin R. Albrecht for hiring me as a postdoc. I
hope we will establish a lot of fruitful collaborations in the years to come.

Cette thèse conclue une longue période de ma vie passée en France (11 ans). Je remercie
tous ceux rencontrés sur le chemin qui m’ont permis de m’améliorer et de mieux me connaître
moi-même. Merci pour toutes les mémoires partagées ensemble, je les porterai avec moi dans
les aventures à venir.

Résumé

La cryptographie post-quantique est une branche de la cryptographie qui vise à concevoir des
systèmes cryptographiques non quantiques (c’est-à-dire classiques), qui sont protégés contre
un adversaire possédant un ordinateur quantique. Dans cette thèse, nous nous concentrons sur
l’étude de deux problèmes fondamentaux pour la cryptographie post-quantique : le problème
du plus court vecteur (SVP) et le problème de la somme de sous-ensembles aléatoires.

Le SVP demande de trouver le plus court vecteur non nul d’un réseaux euclidien donné.
Il sert de jauge pour quantifier la sécurité de la cryptographie reposant sur les réseaux
euclidiens, qui est considérée comme prometteuse pour l’ère post-quantique. Les principales
approches pour résoudre le SVP sont les algorithmes de tamisage, qui utilisent un temps et un
espace exponentiels, et les algorithmes d’énumération, qui utilisent un temps superexponentiel
et un espace polynomial. Même si les algorithmes de tamisage sont asymptotiquement les
algorithmes connus les plus rapides pour le SVP, la complexité en mémoire, en grande dimension,
a historiquement été un facteur limitant pour exécuter ces algorithmes. Certains travaux
récents ont montré comment utiliser de nouvelles astuces pour rendre possible l’utilisation du
tamisage sur des réseaux euclidiens à haute dimension dans la pratique et bénéficier de leur
temps de fonctionnement efficace. Néanmoins, la question de l’obtention d’un algorithme qui
réalise le «meilleur des deux mondes », c’est-à-dire un algorithme qui fonctionne en temps
exponentiel et ne nécessite qu’une quantité polynomiale de mémoire, reste ouverte depuis
longtemps. En l’absence d’un tel algorithme, il est souhaitable d’avoir un compromis entre
le temps et la quantité de mémoire requise qui interpole entre les meilleurs algorithmes de
tamisage actuels et les meilleurs algorithmes d’énumération actuels.

Dans cette thèse, nous donnons tout d’abord un compromis temps-mémoire prouvable qui
interpole approximativement entre les garanties de ressources des algorithmes de tamisage et
celles des algorithmes d’énumération. Nous montrons ensuite l’algorithme quantique prouvable
le plus rapide connu qui résout le SVP en temps 20.9535n`opnq et en mémoire classique 20.5n`opnq

avec seulement un nombre polypnq de qubits. Nous montrons également le meilleur algorithme
prouvable classique connu dont la complexité en mémoire est de 20.5n`opnq.

Quant aux algorithmes d’énumération, on pensait auparavant qu’ils pouvaient bénéficier
d’une accélération quadratique quantique grâce à l’algorithme de Grover. Nous montrons que
cette accélération quadratique peut effectivement être obtenue pour l’algorithme d’énumération
de base et ses variantes d’élagage cylindrique et discret, mais avec des algorithmes quantiques
plus sophistiqués tels que la marche quantique sur les arbres. Notre accélération quantique
s’applique également à l’élagage extrême où l’on répète le processus d’énumération sur plusieurs
bases réduites : une approche naïve ne ferait que réduire le coût classique de mt (où m est
le nombre de bases et t est le coût d’un seul processus d’énumération) à m

?
t opérations

quantiques, mais nous le ramenons à
?
mt.

v

Le problème de la somme de sous-ensembles aléatoires sous-tend également certains schémas
cryptographiques visant à la sécurité post-quantique, bien qu’il soit principalement de nature
académique. Dans un contexte de cryptanalyse, il sert souvent d’outil car de nombreux
problèmes sur lesquels se fonde la cryptographie moderne peuvent être exprimés comme des
variantes (vectorielles) du problème de la somme de sous-ensembles. Plus récemment, il a
également été démontré qu’il peut être utilisé comme élément de base dans certains algorithmes
de décalage caché quantique, qui ont des applications dans la cryptanalyse quantique de schémas
symétriques et de schémas reposant sur les isogénies.

Dans cette thèse, nous présentons de nouveaux algorithmes classiques et quantiques pour
la résolution du problème de la somme de sous-ensembles aléatoires. Nous obtenons d’abord
l’algorithme classique le plus rapide connu en temps rO

`

20.283n˘. Ensuite, nous améliorons l’état
de l’art des algorithmes quantiques pour ce problème dans plusieurs directions. Nous concevons
un algorithme avec un temps asymptotique rO

`

20.236n˘, avec l’avantage d’utiliser une mémoire
classique avec accès aléatoire quantique. Les algorithmes connus précédemment utilisaient des
marches quantique, et nécessitaient une mémoire quantique avec accès aléatoire quantique.
Nous proposons également des marches quantiques plus rapides pour ce problème en temps
rO
`

20.216n˘. Ce temps dépend d’une heuristique concernant le temps de mise à jour dans les
marches quantiques. Les algorithmes précédents pour ce problème dépendaient eux aussi de
cette heuristique. Nous montrons comment surmonter partiellement cette heuristique, et nous
obtenons un algorithme quantique de temps rO

`

20.218n˘ ne nécessitant que les heuristiques
standard du problème de la somme de sous-ensembles aléatoires.

Mots clefs: Complexité de calcul, Algorithmes quantiques, Cryptographie post-quantique,
Cryptographie basée sur les réseaux euclidiéns, Problème du plus court vector, Problème de la
somme de sous-ensembles

Abstract

Post-quantum cryptography refers to a branch of cryptography aimed at designing non-
quantum (ie. classical) cryptographic systems which are secure against an adversary having
a quantum computer. In this thesis we focus on the study of two fondamental problems for
post-quantum cryptography: the Shortest Vector problem (SVP) and the random Subset-Sum
problem.

The SVP asks to find the shortest non-zero vector of a given lattice. It serves as a
gauge to quantify the security of lattice-based cryptography which is widely considered to
be promising for the post-quantum era. The main approaches to solve the SVP are the
sieving algorithms, which use exponential time and space, and the enumeration algorithms,
which use superexponential time and polynomial space. Even though sieving algorithms
are asymptotically the fastest known algorithms for SVP, the memory requirement, in high
dimension, has historically been a limiting factor to run these algorithms. Some recent works
have shown how to use new tricks to make it possible to use sieving on high-dimensional
lattices in practice and benefit from their efficient running time. Nevertheless, it has been a
long standing open question to obtain an algorithm that achieves the “best of both worlds”, i.e.
an algorithm that runs in exponential time and requires only polynomial amount of memory.
In the absence of such an algorithm, it is desirable to have a smooth tradeoff between time
and memory requirement that interpolates between the current best sieving algorithms and
the current best enumeration algorithms.

In this thesis, we first give a provable time memory trade-off which roughly interpolates
between the resource guarantees of sieving algorithms and those of enumeration algorithms.
We then show the fastest state-of-the-art provable quantum algorithm that solves SVP using
20.9535n`opnq time and requires 20.5n`opnq classical memory but only polypnq qubits. We also
provide the fastest classical algorithm in the provable setting whose memory is 20.5n`opnq.

As for the enumeration algorithms, it was previously commonly believed that they can
benefit from a quantum quadratic speed-up using Grover’s algorithm. We show that the
quadratic speed-up can indeed be achieved for lattice enumeration and its cylinder and discrete
pruning variants, but with more sophisticated quantum algorithms such as quantum walk
on trees. Our quantum speed-up applies further to extreme pruning where one repeats
enumeration over many reduced bases: a naive approach would only decrease the classical cost
mt (where m is the number of bases and t is the number of operations of a single enumeration)
to m

?
t quantum operations, but we bring it down to

?
mt.

The random subset-sum problem also underlies some cryptographic schemes aiming at
post-quantum security, although it is mostly of academic nature. In a cryptanalysis context,
it often serves as a cryptanalytic tool as many problems on which modern cryptography
is build can be expressed as some (vectorial) versions of the subset sum problem. More

vii

recently it is also shown that it can be used as a building block in some quantum hidden shift
algorithms, which have applications in quantum cryptanalysis of isogeny-based and symmetric
cryptographic schemes.

In this thesis, we present new classical and quantum algorithms for solving random subset-
sum instances. We first show the fastest state-of-the-art classical algorithm using rO

`

20.283n˘

time. Next, we improve the state of the art of quantum algorithms for this problem in
several directions. We devise an algorithm with asymptotic running time rO

`

20.236n˘, with the
advantage of using classical memory with quantum random access. The previously known
algorithms all used the quantum walk framework, and required quantum memory with quantum
random access. We also propose faster quantum walks for subset-sum with time complexity
rO
`

20.216n˘. This time is dependent on a heuristic on quantum walk updates that is also
required by the previous algorithms. We show how to partially overcome this heuristic, and
we obtain a quantum algorithm with time rO

`

20.218n˘ requiring only the standard subset-sum
heuristics.

Key-words: Computational Complexity, Quantum algorithms, Post-quantum cryptography,
Lattice-based crytography, Shortest Vector Problem, Random Subset-Sum Problem

Contents

Contents i

List of Publications 1

1 Introduction 3
1.1 Contributions . 8

1.1.1 Provable Time-Space Trade-off for SVP 8
1.1.2 Faster Provable Classical and Quantum Algorithms for SVP 9
1.1.3 Quantum Quadratic Speed-up for Enumeration Algorithms for SVP and

CVP . 10
1.1.4 Better Quantum and Classical Algorithms for the Random Subset Sum

Problem . 12
1.1.5 Other Work . 12

2 Preliminaries 17
2.1 Basic Notations . 17
2.2 Quantum Computing . 17

2.2.1 Introduction . 18
2.2.2 Access to Memory . 21
2.2.3 Quantum Search . 22
2.2.4 Quantum Walk Algorithms . 23
2.2.5 Quantum Walk on Trees . 24

2.3 Probability . 26
2.4 Lattices . 27
2.5 Reduction from CVP to DGS . 32

3 Discrete Gaussian Sampling and the Shortest Vector Problem 37
3.1 Introduction . 37
3.2 Gaussian Sampling and the SVP . 38
3.3 Algorithm for Discrete Gaussian Sampling . 42
3.4 Algorithms for BDD and SVP . 46
3.5 Comparison with previous time/space trade-offs 47

4 New Space Efficient Provable Algorithms for the SVP 49
4.1 Introduction . 49
4.2 Improved algorithms for BDD . 50

i

4.2.1 BDD when ε is small . 51
4.2.2 BDD when ε is large . 53
4.2.3 Putting everything together . 54

4.3 Quantum algorithm for SVP . 56
4.4 Solving SVP by spherical caps on the sphere 57
4.5 Dependency of the SVP on a quantity related to the kissing number 60

5 Enumeration Algorithms for the Shortest Vector Problem 63
5.1 Introduction . 63
5.2 Enumeration Algorithms and Pruning . 64

5.2.1 Pruned Enumeration . 65
5.2.2 Cylinder Pruning . 67
5.2.3 Discrete Pruning . 67
5.2.4 Success Probability . 69
5.2.5 Selecting Tags . 70
5.2.6 Noise Distributions in the Unique Setting 71
5.2.7 Universality proof of Babai’s and the natural partition 73

5.3 Quantum speed-up of Cylinder Pruning . 74
5.3.1 Tools . 74
5.3.2 Application to Cylinder Pruning . 78

5.4 Linear Optimization for Discrete Pruning . 79
5.4.1 Reduction to Linear Optimization . 79
5.4.2 Limits of Orthogonal Enumeration . 80
5.4.3 Solving Linear Optimization . 81

5.5 Quantum Speed-up of Discrete Pruning . 83
5.5.1 Determining the best cells implicitly . 84
5.5.2 Finding the best lattice vector . 88
5.5.3 The Case of Extreme Pruning . 88

5.6 Impact . 89

6 The Subset Sum Problem 93
6.1 Introduction . 93
6.2 List Merging and Classical Subset-sum Algorithms 94

6.2.1 The HGJ algorithm . 95
6.2.2 The BCJ Algorithm . 99
6.2.3 Our Extended Representation . 100
6.2.4 Correctness of the Algorithms . 103
6.2.5 Sampling from a distribution of knapsacks 103

6.3 Previous Quantum Algorithms for Subset-sum 104
6.3.1 Solving Subset-sum with Quantum Walks 105

6.4 Quantum Asymmetric HGJ . 106
6.4.1 Quantum Match-and-Filter . 106
6.4.2 Revisiting HGJ . 108
6.4.3 Improvement via Quantum Filtering . 110
6.4.4 Quantum Time-Memory Tradeoff . 111

6.5 New Algorithms Based on Quantum Walks . 112

6.5.1 Asymmetric 5th level . 112
6.5.2 Better Setup and Updates using quantum search 113
6.5.3 Parameters . 114

6.6 Mitigating Quantum Walk Heuristics for Subset-Sum 115
6.6.1 New Data Structure for Storing Lists . 115
6.6.2 New Data Structure for Vertices . 117
6.6.3 Estimating a Number of Solutions Reversibly 120
6.6.4 Fraction of Marked Vertices . 121
6.6.5 Time Complexities without Heuristic 2 125

7 Conclusion 127

Bibliography 131

Notations and Acronyms 145

List of Publications

[ACKS21] Divesh Aggarwal, Yanlin Chen, Rajendra Kumar, and Yixin Shen. Improved
(provable) algorithms for the shortest vector problem via bounded distance decoding.
In Markus Bläser and Benjamin Monmege, editors, 38th International Symposium
on Theoretical Aspects of Computer Science, STACS 2021, March 16-19, 2021,
Saarbrücken, Germany (Virtual Conference), volume 187 of LIPIcs, pages 4:1–4:20.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

[BBSS20] Xavier Bonnetain, Rémi Bricout, André Schrottenloher, and Yixin Shen. Improved
classical and quantum algorithms for subset-sum. In Shiho Moriai and Huaxiong
Wang, editors, Advances in Cryptology - ASIACRYPT 2020 - 26th International
Conference on the Theory and Application of Cryptology and Information Security,
Daejeon, South Korea, December 7-11, 2020, Proceedings, Part II, volume 12492 of
Lecture Notes in Computer Science, pages 633–666. Springer, 2020.

[ABI`20] Andris Ambainis, Kaspars Balodis, Janis Iraids, Kamil Khadiev, Vladislavs Kle-
vickis, Krisjanis Prusis, Yixin Shen, Juris Smotrovs, and Jevgenijs Vihrovs. Quan-
tum lower and upper bounds for 2d-grid and dyck language. In Javier Esparza and
Daniel Král’, editors, 45th International Symposium on Mathematical Foundations
of Computer Science, MFCS 2020, August 24-28, 2020, Prague, Czech Republic,
volume 170 of LIPIcs, pages 8:1–8:14. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2020.

[ANS18] Yoshinori Aono, Phong Q. Nguyen, and Yixin Shen. Quantum lattice enumeration
and tweaking discrete pruning. In Thomas Peyrin and Steven D. Galbraith, editors,
Advances in Cryptology - ASIACRYPT 2018 - 24th International Conference on the
Theory and Application of Cryptology and Information Security, Brisbane, QLD,
Australia, December 2-6, 2018, Proceedings, Part I, volume 11272 of Lecture Notes
in Computer Science, pages 405–434. Springer, 2018.

1

Chapter1Introduction

Cryptography is the study of techniques for secure communication in the presence of malicious
third parties. One of the main goals of cryptography is to guarantee the confidentiality of
messages, by encrypting them before transmission. Historically, the first encryption procedures
belong to the category of symmetric key encryption schemes, where the sender and the receiver
share a common key to encrypt and decrypt the message. To do so, they either need to
meet in person, or use a trusted third party, before being able to communicate safely. These
requirements are clearly too restrictive for today’s use of cryptography. Fortunately, Diffie
and Hellman invented the idea of public key cryptographic in 1976 [DH76]. The principle
is that each user now has its own secret key, which it keeps for itself, but it also has a
public key, which it makes publicly available. The public key enables others to encrypt a
message that only the user with the corresponding secret key will be able to decrypt. Public
key encryption schemes are usually far less efficient than symmetric key ones. In today’s
cryptographic communication protocols, a public key scheme is typically used at the beginning
of the conversation to exchange a shared secret symmetric key between two users. A symmetric
key scheme is used with this shared secret symmetric key for the rest of the conversation. The
security of public key encryption schemes is typically based on some mathematical assumptions,
i.e. under the assumption that some mathematical problems are hard to solve, one can prove
that no attacker (for a certain model of attacker) can recover the underlying message if it only
knows the encrypted message and the public key. For the Diffie-Hellman protocol mentioned
above, the hard problem that it relies on is the discrete logarithm problem. The presumed
hardness of this problem (in practice on elliptic curves) has since been used for many other
cryptographic constructions. Another very important problem for cryptography is integer
factorization. The famous RSA encryption scheme that we are still using today is based on a
problem related to it.

In the 1970s and 80s, the notion of quantum computer was suggested by several physicists
such as Richard Feynman, Paul Benioff, David Deutsch or Charles H. Bennett. Feynman’s
idea was that using a quantum computer to simulate quantum phenomenon could be much
more suitable than current computers, for which this problem is insurmountable. This idea
remained ignored for a long time, as the realization of such a computer seemed improbable,
and the applications were restricted. Everything changed in 1994, when Peter Shor’s seminal
work [Sho97] showed that a quantum computer could effectively solve the usual problems of
public key cryptography (namely factorization and discrete logarithm), and therefore break
most cryptography deployed on the internet. This launched the development of quantum
computing, and post-quantum cryptography.

3

4 Chapter 1. Introduction

Post-quantum cryptography refers to a branch of cryptography aimed at designing non-
quantum, ie. classical cryptographic systems which are secure against an adversary having
access to a quantum computer. For public key cryptography, alternatives to RSA and Diffie-
Hellman are needed because of Shor’s quantum attacks that run in time polynomial in the
size of the key. Long considered a rather marginal subject, post-quantum cryptography has
now been on the international scene for several years, with first the announcement by the
NSA in 2015 of its transition to post-quantum cryptography, then the launch in 2016 by NIST
of an international competition to standardize post-quantum cryptosystems [NIS]. Many
companies are interested in the viability of post-quantum cryptography: for example, Google
experimented for several months a post-quantum version (based on Euclidean lattices) of the
famous TLS protocol massively deployed on the Internet [GOO].

To date, there are several candidates for post-quantum cryptography, mainly lattice-
based, code-based, hash-based, and multivariate cryptography (based on polynomial systems
with several variables), and more recently, supersingular elliptic curve isogeny cryptography.
Although these candidates are for the most part relatively old (dating back to the invention of
the RSA), they raise some questions. All of these candidates suffer from significantly longer
key sizes than RSA and elliptical curve cryptography, and are thus less efficient. Furthermore,
their long-term security remains open, for quantum but also classic adversaries: many of these
systems have been broken in practice, especially in code-based and multivariate cryptography.
As for hash-based cryptography, we only know how to construct signature schemes from it,
but not encryption schemes. Furthermore, only a limited number of signatures can be signed
using each private key. Lattice-based cryptography thus seems to be the most promising post-
quantum candidate. Among the round 3 finalists of the NIST Post-Quantum Cryptography
Standardization procedure, 3 out of 4 Public-key Encryption and Key-establishment schemes
and 2 out of 3 Digital Signature schemes are lattice-based.

Euclidean lattices can not only be used to construct various cryptographic primitives such
as hash functions [LMPR08], signatures [GPV08, Lyu12], encryption schemes [Reg06, GPV08],
pseudo random functions [BPR12], but also to build more sophisticated cryptographic primi-

0Image from Physics World’s “Alice and Bob communicate without transferring a single photon”.

https://physicsworld.com/a/alice-and-bob-communicate-without-transferring-a-single-photon/

5

b1

b2

O

Figure 1.1: A 2D lattice with a basis pb1, b2q at the origin O.

O

Figure 1.2: A lattice and a shortest nonzero
vector: the blue circle does not contain any
nonzero in its interior.

O

Figure 1.3: A lattice and a vector whose
length is smaller than γ “ 2 times the length
of the shortest nonzero vector.

tives including fully homomorphic encryption schemes (FHE) [Gen09], identity based encryp-
tion (IBE) [GPV08, CHKP10], attribute based encryption (ABE) [AFV11], group signatures
[GKV10] and so on. Most of those primitives are based on two mathematical problems known
as the Short Integer Solution problem (SIS) [Ajt96] and the Learning with Errors problem
(LWE) [Reg05]. These problems can be seen as randomized variants of two fundamental
problems on lattices: the Shortest Vector Problem (SVP) and the Closest Vector Problem
(CVP). Moreover, most strategies for cryptanalysing the previous cryptographic primitives
rely on lattice reduction techniques known as the BKZ algorithm. BKZ internally uses an
algorithm to solve (near) exact SVP in lower-dimensional lattices. Therefore, understanding
the complexity SVP is critical to choosing security parameters of cryptographic primitives. In
this thesis, we will study several approaches to solve SVP, and CVP to a lesser extent.

Lattices. A (Euclidean) lattice L is a discrete subgroup of Rm, or equivalently the set
Lpb1, . . . ,bnq “ t

řn
i“1 xibi : xi P Zu of all integer combinations of n linearly independent

vectors b1, . . . ,bn P Rm. Such bi form a basis of L. All the bases have the same number n of
elements, called the dimension or rank of L. The lattice L is said to be full-rank if n “ m
(see figure 1.1).

One of the fundamental algorithmic problems related to lattices is to find a shortest non-
zero element of an arbitrary lattice (with respect to its Euclidean norm), given an arbitrary
basis of this lattice. This problem is referred to as the shortest vector problem (SVP) (see
Figure 1.2). A natural approximate version of this problem exists, where the problem consists
in finding a non-zero vector of the lattice whose Euclidean norm is no more than γ times
the norm of a shortest non-zero vector. This problem is referred to as the γ-approximate
shortest vector problem (γ-approx-SVP) (see Figure 1.3). Starting from the ’80s, the use of
approximate and exact solvers for SVP (and other lattice problems) gained prominence for their
applications in algorithmic number theory [LLL82], convex optimization [Jr.83, Kan87, FT87],
coding theory [dB89], and cryptanalysis tool [Sha84, Bri84, LO85].

The SVP is a well studied computational problem in both its exact and approximate versions.

6 Chapter 1. Introduction

It is known to be NP-hard to approximate within any constant factor by a randomized reduction,
and hard to approximate within a factor nc{ log logn for some c ą 0 under reasonable complexity-
theoretic assumptions (NP Ę RSUBEXP) [Ajt98, Mic98, Kho05, HR07]. For an approximation
factor 2Opnq, one can solve SVP in time polynomial in n using the celebrated LLL lattice basis
reduction algorithm [LLL82]. In cryptography, we are interested in approximating SVP within
factors polynomial in n. The fastest known algorithms for this regime rely on (a variant of) the
BKZ lattice basis reduction algorithm [Sch87, SE94a, AKS01, GN08, HPS11, ALNS20, LN20],
which can be seen as a generalization of the LLL algorithm and gives a Opβn{βq approximation
in 2Opβq polypnq time for any 2 ď β ď n. The smallest approximation factor for which the BKZ
algorithm runs in polynomial time is 2Opn log logn

logn q, which is better than the LLL algorithm.
As one would expect from the hardness results above, all known algorithms for solving

exact SVP require at least exponential time. In fact, the fastest known algorithms also require
exponential space. There has been some recent evidence [AS18a] showing that one cannot
hope to get a 2opnq time algorithm for SVP if one believes reasonable complexity theoretic
conjectures such as the (Gap) Exponential Time Hypothesis. Most of the known algorithms
for SVP can be broadly classified into two classes: (i) the algorithms that require memory
polynomial in n but run in time nOpnq and (ii) the algorithms that require memory 2Opnq and
run in time 2Opnq.

The first class, initiated by Kannan [Kan87, Hel85, HS07, MW15], combines lattice basis
reduction with exhaustive enumeration inside Euclidean balls. While enumerating vectors
requires 2Opn lognq time, it is much more space-efficient than other kinds of algorithms for
exact SVP. These algorithms can be further made much faster in practice using some heuristic
techniques, in particular the pruning technique [SE94a, GNR10, Che13].

Another class of algorithms, and currently the fastest, is based on sieving. First developed
by Ajtai, Kumar, and Sivakumar [AKS01], they generate many lattices vectors and then divide-
and-sieve to create shorter and shorter vectors iteratively. A sequence of improvements [Reg04,
PS09, ADRS15, AS18b], has led to a 2n`opnq time and space algorithm by sieving the lattice
vectors and carefully controlling the distribution of output, thereby after several sieving
steps outputting a set of lattice vectors that contains the shortest vector with overwhelming
probability. There are also variants [NV08, MV10] of the sieving algorithms mentioned
above that, under some heuristic assumptions, give a p4{3qn`opnq time complexity and a
p4{3qn{2`opnq memory complexity. They assume, for example, that the direction of the vectors
is uniform on the unit sphere, and the vectors in the sieved lists are independent. A long line
of work, including [BGJ13, Laa15a, Laa15b, BDGL16] decreases this time complexity down
to p3{2qn{2`opnq while still keeping the same memory complexity (also p4{3qn{2`opnq). Other
variants (tuple-sieving) are designed to lower the memory complexity [BLS16, HK17], still
under heuristic assumptions.

Another important problem related to lattices is the closest vector problem (CVP). Given
an arbitrary basis of a lattice L and a target point t in the space, one needs to find a point of L
closest to t (see figure 1.4). In the approximate variant of this problem, called γ-approx-CVP,
the goal is to find a point of L at distance at most γ ¨ distpL, tq from t, where γ ě 1 and
distpL, tq is the minimal distance between t and a point of L (see Figure 1.5). The best
algorithms to solve γ-approx-CVP are asymptotically as efficient as for γ-approx-SVP. In other
words, the best algorithm to solve exact CVP has a complexity exponential in the dimension
n of the lattice and the smallest approximation factor for which we have a polynomial time

7

t

O

Figure 1.4: A lattice, a target vector t and a
closest lattice vector to t.

t

Figure 1.5: A lattice, a target vector t and
a lattice vector at dist at most γ ¨ distpL, tq
from t, where γ ă 2.

algorithm is 2Opn log logn
logn q.

Subset Sum. In this thesis, we also study the subset-sum problem. The subset-sum problem,
also known as knapsack problem is the following: given n integers a “ pa1, . . . anq and a target
integer S, find an n-bit vector e “ pe1, . . . enq P t0, 1un such that e ¨ a “

ř

i eiai “ S. The
density of the knapsack instance is defined as d “ n{plog2 maxi aiq and, for a random instance
a, it is related to the number of solutions that one can expect.

The decision version of the subset-sum problem is NP-complete [GJ79]. In the low density
case, we can transform it to the problem of finding a particular short vector in an integer
lattice, and apply the LLL lattice reduction algorithm to solve it in polynomial time [LO83].
In the high density case, subexponential time algorithms also exist using Wagner’s algorithm
[Lyu05] which is in some sense a more general version of the BKW algorithm [BKW03] also
used to solve the LWE problem [ACF`15]. When the density is close to 1, the best algorithms
known are exponential-time, which is why we name these instances “hard” knapsacks.

In cryptographic applications, one usually encounters random instances rather than worst
case instances. Such instances of the subset-sum problem are defined by choosing a “

pa1, . . . anq uniformly at random from pZ{MZqn for some integer M and setting S “ e ¨ a
mod M for a binary e P t0, 1un where half of the coordinates are equal to one. Note that we
are now focusing on the modular version of the subset-sum problem, where we want to find
a solution for S “ e ¨ a mod M . Up to polynomial factors, solving modular knapsacks and
knapsacks over the integers is equivalent: any algorithm that realizes one task can be used to
solve the other. The hardest case where the density equals 1 corresponds to M “ 2n. In a
breakthrough paper, Howgrave-Graham and Joux [HJ10] showed how to solve these specific
random instances in time 20.337n, breaking the Horowitz-Sahni bound of 20.5n for worst case
instances [HS74]. This bound was later improved by Becker, Coron and Joux [BCJ11] down
to 20.291n time and memory, which was the best known runtime before the work in this thesis.
In the quantum setting, [BJLM13] and [HM18] are the corresponding quantum algorithms of
[HS74] and [BCJ11]. They run in respective time 20.241n and 20.226n and use quantum walks
on Johnson graphs.

The random subset-sum problem underlies some cryptographic schemes aiming at post-
quantum security (see e.g. [LPS10]), although it is mostly of academic nature. In a cryptanalysis
context, it often serves as a cryptanalytic tool as many problems on which modern cryptography
is built can be expressed as some (vectorial) versions of the subset sum problem. This is
the case for the syndrome decoding problem in code-based cryptography, where the fastest
known algorithms [BJMM12, BM18] heavily rely on the fastest algorithms known to solve

8 Chapter 1. Introduction

the subset-sum problem. It is also the case for the short integer solution problem and for
the learning parity with noise problem (LPN) [Ale03]. More recently it was also shown
that the subset-sum problem can be used as a building block in some quantum hidden shift
algorithms [Bon19], which have applications in quantum cryptanalysis of isogeny-based [BS20]
and symmetric cryptographic schemes [BN18].

1.1 Contributions
During my PhD, I have been interested in the difficulty of problems related to lattices. Namely,
I have focused on both provable and heuristic algorithms for solving SVP in classical and
quantum settings. Some of my results also apply to CVP. I also worked on the random
subset-sum problem and developed better classical and quantum algorithms for it. The
quantum algorithms I have developed fall into three categories, depending the type of quantum
memory they use: plain quantum circuits (where we only use a set of universal quantum gates
on qubits), classical memory with quantum random access (QRACM) and quantum memory
with quantum random access (QRAQM). While low depth construction of QRACM has been
proposed (albeit with a blow up in the number of required qubits), no physical architecture
with low depth has been proposed for QRAQM. Typically, Grover search requires QRACM but
MNRS-type quantum walks need QRAQM [MNRS11]. It is of interest to design algorithms
with the minimum possible requirements on the quantum memory models. Whenever possible,
I have tried to only use the plain quantum circuit model or the more realistic QRACM model.
See Section 2.2.2 for a more detailed discussion on different types of quantum memory.

1.1.1 Provable Time-Space Trade-off for SVP
We first present in Chapter 3 a new randomized algorithm for SVP that provides a smooth trade-
off between the time complexity and memory requirement without any heuristic assumptions.
This algorithm is obtained by giving a new randomized algorithm for sampling lattice vectors
from the Discrete Gaussian distribution up to the smoothing parameter that runs in time
q11n`opnq and requires polypqq ¨ q16n{q2 space, where q can be any integer in r4,

?
ns. The

smoothing parameter quantifies how smooth the Discrete Gaussian distribution is: The smaller
the parameter is, the more discrete the distribution is and the harder it is to sampler from it.
Using the standard reduction from Bounded Distance Decoding (BDD) with preprocessing
(where an algorithm solving the problem is allowed unlimited preprocessing time on the
lattice before the algorithm receives the target vector) to Discrete Gaussian Sampling (DGS)
from [DRS14] and a reduction from SVP to BDD given in [CCL18], we obtain a randomized
algorithm that solves SVP in time q11n`opnq and in space polypnq ¨ q

16n
q2 .

If we take k “ q2, then the time complexity of our SVP algorithm becomes k5.5n`opnq and
the space complexity polypnq ¨ kp8n{kq. Our trade-off without any heuristic assumptions is
thus the same (up to a constant in the exponents) as what was claimed1 by Kirchner and
Fouque [KF16] and proven in [HK17] under heuristic assumptions.

Our trade-off for the DGS is obtained by extending the classical coset-based sieving
algorithm of [ADRS15]. Instead of efficiently pairing vectors in the same cosets of L{2L to

1[KF16] never passed peer review. We will discuss their results in Section 3.5

1.1. Contributions 9

obtain smaller ones (which takes a lot of space), we try to combine many vectors at random
until we find one in qL. Combining vectors at random is very space efficient but potentially
very time inefficient. The main observation is that if we combine sufficiently many vectors,
then the sum behaves likes a uniformly distributed variable over the cosets of L{qL and
hence, on average, we will not have to wait too long to successfully combine vectors. Indeed,
above the smoothing parameter, the distribution over the cosets of a random sample from the
discrete Gaussian distribution is almost uniform. Furthermore, again above the smoothing
parameter, the sum of independent discrete Gaussian variables is very close to a discrete
Gaussian distribution.

1.1.2 Faster Provable Classical and Quantum Algorithms for SVP
In Chapter 4, we present the fastest quantum algorithm without any heuristic assumptions
for SVP. To date, the fastest classical provable algorithm for SVP [ADRS15] runs in time
and space 2n`opnq. Previously, no faster provable quantum algorithm was known. We show
a quantum algorithm that solves SVP in time 20.9532n`opnq and classical space 20.5n`opnq

with an additional number of qubits polynomial in n. Our algorithm is a follow-up work of
[CCL18] in which the authors provided a quantum algorithm in time 21.2553n`opnq and space
20.5n`opnq. [CCL18] provided a reduction from SVP to BDD. We improve over [CCL18] by
constructing a better BDD oracle that costs less on each query. The BDD oracle is obtained
by first producing many samples from a discrete Gaussian distribution above the smoothing
parameter and then applying a classical reduction from BDD to DGS. The quality of the
reduction fundamentally depends on the width s of the Gaussian, which needs to be equal
to the smoothing parameter ηε of the lattice for some ε. Unfortunately, the most efficient
DGS sampler above the smoothing parameter stops at

?
2η1{2. The solution proposed by

[CCL18] is to find ε such that ηε ą
?

2η1{2, unfortunately this requires to choose a much
smaller ε than necessary. We avoid this step by construction a super lattice L1 of L such that
ηεpL1q ď ηεpLq{

?
2. This way, by using the best DGS sampler, we can reach

?
2ηεpL1q “ ηεpLq

without changing the parameter ε. We need an extra rejection sampling step to only keep
vectors in L but not in L1 but the impact on the complexity is small.

We also present a classical randomized algorithm for SVP that improves over the algorithm
from [CCL18] and results in the fastest classical algorithm that has a space complexity
20.5n`opnq. We improve over [CCL18] by showing how to reduce the number of queries to
the BDD oracles by making smarter queries. Our algorithm solves SVP in time 21.730n`opnq

and space 20.5n`opnq. The classical technique to reduce SVP to BDD involves constructing
a α-BDD oracle and then using this oracle to enumerate all lattice points in a sufficiently
large ball. Intuitively speaking, if α “ 1{p for some integer p then we will need to make pn
queries to enumerate all points. Previous work, including our quantum algorithm, construct a
1{3-BDD oracle and hence make 3n queries. Ideally, we would like to take p “ 2 but we cannot
build a 1{2-BDD oracle. Our main observation is that instead of enumerating all points inside
a large ball, it is more efficient to enumerate all points inside many smaller balls that, together,
cover the large ball. By doing so, each small ball only requires 2n queries and by carefully
choosing the radius α, we can use less than p3{2qn balls, resulting in an overall net gain.

The time complexity of these two results are obtained using a known upper bound of a
quantity βpLq related to the kissing number of a lattice (see Section 2.4) which is 20.402n. In
practice most lattices have a much smaller βpLq which is often 2opnq. In that case, our classical

10 Chapter 1. Introduction

Time Complexity Space Complexity Reference

n
n
2e`opnq polypnq [Kan87, HS07]

2n`opnq 2n`opnq [ADRS15]

22.05n`opnq 20.5n`opnq [CCL18]

21.7397n`opnq 20.5n`opnq This thesis, [ACKS21]

Table 1.1: Classical randomized provable algorithms for the shortest vector problem.

Time Complexity Space Complexity Reference

21.799n`opnq 21.286n`opnq classical memory
with quantum random access
(QRACM) + polypnq qubits

[LMvdP15a]

21.2553n`opnq 20.5n`opnq classical memory +
polypnq qubits

[CCL18]

20.9535n`opnq 20.5n`opnq classical memory +
polypnq qubits

This thesis, [ACKS21]

Table 1.2: Quantum provable algorithms for the shortest vector problem. [LMvdP15a] uses
the QRACM model. [CCL18] and our quantum algorithm need only polynomial qubits and
20.5n`opnq classical space.

algorithm runs in time 21.292n and our quantum algorithm runs in time 20.750n. More generally,
we study the dependency of the complexity of the algorithms on the quantity βpLq.

We summarize known provable classical randomized algorithms and quantum algorithms
respectively in Table 1.1 and Table 1.2. Note that classical algorithms can also be seen as
quantum algorithms without using any quantum power.

1.1.3 Quantum Quadratic Speed-up for Enumeration Algorithms
for SVP and CVP

In Chapter 5, we show that lattice enumeration and its cylinder and discrete pruning variants
can all be quadratically sped up on a quantum computer, unlike sieving. This is done by a
careful interpretation and analysis of enumeration as tree algorithms. Interestingly, we show
that this speedup also applies to extreme pruning [GNR10] where one repeats enumeration
over many reduced bases: a naive approach would only decrease the classical cost mt (where
m is the number of bases and t is the number of operations of a single enumeration) to m

?
t

quantum operations, but we bring it down to
?
mt.

First, we clarify the application of Montanaro’s algorithm [Mon15] to enumeration with
cylinder pruning: the analysis of [Mon15] assumes that the degree of the tree is bounded by
a constant, which is tailored for constraint satisfaction problems, but is not the setting of

1.1. Contributions 11

lattice enumeration. To tackle enumeration, we add basic tools such as binary tree conversion
and dichotomy: we obtain that if a lattice enumeration (with or without cylinder pruning)
searches over a tree with T nodes, the best solution can be found by a quantum algorithm
using roughly

?
T poly-time operations, where there is a polynomial overhead, which can be

decreased if one is only interested in finding one solution. This formalizes earlier brief remarks
of [ADPS16, dPLP16, ABB`17] and applies to both SVP and CVP.

Our main result is that the quantum quadratic speed-up also applies to the recent discrete
pruning enumeration introduced by Aono and Nguyen [AN17] as a generalization of Schnorr’s
sampling algorithm [Sch03]. To do so, we tweak discrete pruning and use an additional
quantum algorithm, namely that of Ambainis and Kokainis [AK17] from STOC ’17 to estimate
the size of trees. Roughly speaking, given a parameter T , discrete pruning selects T branches
(optimizing a certain metric) in a larger tree, and derives T candidate short lattice vectors
from them. Our quantum variant directly finds the best candidate in roughly

?
T operations.

As mentioned previously, we show that the quadratic speed-up of both enumerations also
applies to the extreme pruning setting (required to exploit the full power of pruning): if
one runs cylinder pruning over m trees, a quantum enumeration can run in

?
T poly-time

operations where T is the sum of the m numbers of nodes, rather than
?
mT naively; and

there is a similar phenomenon for discrete pruning.
Enumeration algorithms are an instance of the general algorithmic technique called branch

and bound. After our paper, [Mon20] proposed a quantum speedup of branch and bound
algorithms which basically uses the same ingredients as in Section 5.5.

As a side result, we develop two tweaks to discrete pruning [AN17], to make it more
powerful and more efficient. The first tweak enables to solve CVP in such a way that most
of the technical tools introduced in [AN17] can be reused. This works for the approximation
form of CVP, but also its exact version formalized by the Bounded Distance Decoding problem
(BDD), which appears in many cryptographic applications such as LWE. In BDD, the input is
a lattice basis and a lattice point shifted by some small noise whose distribution is crucial.
We show how to handle the most important noise distributions, such as LWE’s Gaussian
distribution and finite distributions used in GGH [GGH97] and lattice attacks on DSA [NS02].
Enumeration, which was historically only described for SVP, can trivially be adapted to CVP,
and so does [GNR10]’s cylinder pruning [LN13]. However, discrete pruning [AN17] appears to
be less simple.

The second tweak deals with the selection of optimal discrete pruning parameters, and
is crucial for our quantum variant. Intuitively, given an integer T ą 0, the problem is to
find the T “best” integral vectors t P Nn which minimize some objective function fptq. Aono
and Nguyen [AN17] introduced a fast practical algorithm to do so for a very special useful
choice of f , but the algorithm was heuristic: no good bound on the running time was known.
We show that their algorithm can actually behave badly in the worst case, i.e. it may take
exponential time. But we also show that by a careful modification, the algorithm becomes
provably efficient and even optimal for that f , and heuristically for more general choices of f :
the running time becomes essentially T operations.

Our theoretical analysis has been validated by experiments, which shows that in practical
BDD situations, discrete pruning is as efficient as cylinder pruning. Since discrete pruning has
interesting features (such as an easier parallelization and an easier generation of parameters),
it might become the method of choice for large-scale blockwise lattice reduction.

12 Chapter 1. Introduction

1.1.4 Better Quantum and Classical Algorithms for the Random
Subset Sum Problem

In Chapter 6, we improve classical and quantum subset sum algorithms based on representations.
Such algorithms work by representing the knapsack solution in many different ways, as a sum
of vectors in t0, 1un or t´1, 0, 1un. See Section 6.1 for more details. We write these algorithms
as sequences of “merge-and-filter” operations, where lists of subknapsacks are first merged
with respect to an arbitrary constraint, then filtered to remove the subknapsacks that cannot
be part of a solution.

First, we propose a more time-efficient classical subset-sum algorithm based on representa-
tions. We relax the constraints of BCJ and introduce “2”s in the representations, obtaining a
better time complexity exponent of 0.283.

Most of our contributions concern quantum algorithms. As a generic tool, we introduce
quantum filtering, which speeds up the filtering of representations with a quantum search. We
use this improvement in all our new quantum algorithms.

We give an improved quantum walk based on quantum filtering and our extended
t´1, 0, 1, 2u representations. Our best runtime exponent is 0.216, under the quantum walk
update heuristic of [HM18], which uses the average update time rather than the worst up-
date time in the MNRS quantum walk framework. Next, we show how to overcome this
heuristic, by designing a new data structure for the vertices in the quantum walk, and a
new update procedure with guaranteed time. We remove this heuristic from the previous
algorithms [BJLM13, HM18] with no additional cost. However, we find that removing it from
our quantum walk increases its cost to 0.218.

All previously known quantum algorithms for the subset sum problems use quantum walks
on Johnson graphs, thus require quantum memory with quantum random access (QRAQM).
No quantum algorithms using a weaker quantum memory model, such as classical memory
with quantum random access (QRACM) was known. We devise a new quantum subset-sum
algorithm based on HGJ, with time rO

`

20.236n˘. It is the first quantum time speedup on
classical algorithms that is not based on a quantum walk. The algorithm performs instead
a depth-first traversal of the HGJ tree, using quantum search as its only building block.
Hence, by construction, it does not require the additional heuristic of [HM18] and it only uses
QRACM, giving also the first quantum time speedup for subset-sum in this memory model.

A summary of our contributions is given in Table 1.32.
All these complexity exponents are obtained by numerical optimization. Our code is

available at https://github.com/xbonnetain/optimization-subset-sum .

1.1.5 Other Work
During my PhD studies, I was also involved in another project that has resulted into a
publication. In a joint work with Ambainis et al [ABI`20], we studied the quantum query
complexity of the two following problems:

Quantum complexity of regular languages. Consider the problem of recognizing
whether an n-bit string belongs to a given regular language. This models a variety of

2After this work, Alexander May has informed us that the thesis [Bö11] contains unpublished results using
more symbols, with the best exponent of 0.2871 obtained with the symbol set t´2,´1, 0, 1, 2u.

https://github.com/xbonnetain/optimization-subset-sum

1.1. Contributions 13

Table 1.3: Time exponents of previous and new algorithms for subset-sum, classical and
quantum, rounded upwards. We note that the removal of Heuristic 6.17 in [BJLM13, HM18]
comes from our new analysis in Section 6.6.5. QW: Quantum Walk. QS: Quantum Search.
CF: Constraint filtering (not studied in this thesis). QF: Quantum filtering.

Time
exponent

Represen-
tations

Memory
model Techniques Requires

Heuristic 6.17 Reference

Classical

0.3370 t0, 1u RAM [HJ10]
0.2909 t´1, 0, 1u RAM [BCJ11]
0.287 t´1, 0, 1u RAM CF [Oze16]
0.2830 t´1, 0, 1, 2u RAM Sec. 6.2.3

Quantum

0.241 t0, 1u QRAQM QW No [BJLM13] + Sec. 6.6.5
0.226 t´1, 0, 1u QRAQM QW No [HM18] + Sec. 6.6.5
0.2356 t0, 1u QRACM QS + QF No Sec 6.4.3
0.2156 t´1, 0, 1, 2u QRAQM QW + QF Yes Sec. 6.5.3
0.2182 t´1, 0, 1, 2u QRAQM QW + QF No Sec. 6.6.5

computational tasks that can be described by regular languages. In the quantum case, the
most commonly used model for studying the complexity of various problems is the query
model. For this setting, Aaronson, Grier and Schaeffer [AGS18] recently showed that any
regular language L has one of three possible quantum query complexities on inputs of length
n: Θp1q if the language can be decided by looking at Op1q first or last symbols of the word;
Θ̃p
?
nq if the best way to decide L is Grover’s search (for example, for the language consisting

of all words containing at least one letter a); Θpnq for languages in which we can embed
counting modulo some number p which has quantum query complexity Θpnq.

As shown in [AGS18], a language being of complexity Õp
?
nq (which includes the first

two cases above) is equivalent to it being star-free. Star-free languages are defined as the
languages which have regular expressions not containing the Kleene star (if it is allowed to
use the complement operation). Star-free languages are one of the most commonly studied
subclasses of regular languages and there are many equivalent characterizations of them.
One of the star-free languages mentioned in [AGS18] is the Dyck language (with one type of
parenthesis) with a constant bounded height. The Dyck language is the set of balanced strings
of parentheses (and). If at no point the number of opening parentheses exceeds the number
of closing parentheses by more than k, we denote the problem of determining if an input of
length n belongs to this language by Dyckk,n. The language is a fundamental example of a
context-free language that is not regular. When more types of parenthesis are allowed, the
famous Chomsky–Schützenberger representation theorem shows that any context-free language
is the homomorphic image of the intersection of a Dyck language and a regular language.

Our results. We show that an exponential dependence of the complexity on k is unavoid-
able. Namely, for the balanced parentheses language:

• there exists c ą 1 such that, for all k ď logn, the quantum query complexity is Ωpck
?
nq;

14 Chapter 1. Introduction

• if k “ c logn for an appropriate constant c, the quantum query complexity is Ωpn1´εq.

Thus, the exponential dependence on k is unavoidable and distinguishing sequences of
balanced parentheses of length n and depth logn is almost as hard as distinguishing sequences
of length n and arbitrary depth.

Similar lower bounds have recently been independently proven by Buhrman et al. [BPS19].
Additionally, we give an explicit algorithm for the decision problem Dyckk,n with

O
`?
nplognq0.5k

˘

quantum queries. The algorithm also works when k is not a constant
and is better than the trivial upper bound of n when k “ o

´

logpnq
log logn

¯

.
Finding paths on a grid. The second problem that we consider is graph connectivity

on subgraphs of the 2D grid. Consider a 2D grid with vertices pi, jq, i P t0, 1, . . . , nu, j P
t0, 1, . . . , ku and edges from pi, jq to pi` 1, jq and pi, j ` 1q. The grid can be either directed
(with edges in the directions of increasing coordinates) or undirected. We are given an unknown
subgraph G of the 2D grid and we can perform queries to variables xu (where u is an edge
of the grid) defined by xu “ 1 if u belongs to G and 0 otherwise. The task is to determine
whether G contains a path from p0, 0q to pn, kq.

Our interest in this problem is driven by the edit distance problem. In the edit distance
problem, we are given two strings x and y and have to determine the smallest number of
operations (replacing one symbol by another, removing a symbol or inserting a new symbol)
with which one can transform x to y. If |x| ď n, |y| ď k, the edit distance is solvable in time
Opnkq by dynamic programming [WF74]. If n “ k then, under the strong exponential time
hypothesis (SETH), there is no classical algorithm computing edit distance in time Opn2´εq
for ε ą 0 [BI15] and the dynamic programming algorithm is essentially optimal.

However, SETH does not apply to quantum algorithms. Namely, SETH asserts that there
is no algorithm for general instances of SAT that is substantially better than naive search.
Quantumly, a simple use of Grover’s search gives a quadratic advantage over naive search.
This leads to the question: can this quadratic advantage be extended to edit distance (and
other problems that have lower bounds based on SETH)?

Since edit distance is quite important in classical algorithms, the question about its
quantum complexity has attracted a substantial interest from various researchers. Boroujeni et
al. [BEG`18] invented a better-than-classical quantum algorithm for approximating the edit
distance which was later superseded by a better classical algorithm of [CDG`18]. However,
there has been no quantum algorithms computing the edit distance exactly (which is the most
important case).

The main idea of the classical algorithm for edit distance is as follows:

• We construct a weighted version of the directed 2D grid (with edge weights 0 and 1)
that encodes the edit distance problem for strings x and y, with the edit distance being
equal to the length of the shortest directed path from p0, 0q to pn, kq.

• We solve the shortest path problem on this graph and obtain the edit distance.

As a first step, we can study the question of whether the shortest path is of length 0 or more
than 0. Then, we can view edges of length 0 as present and edges of length 1 as absent. The
question “Is there a path of length of 0?” then becomes “Is there a path from p0, 0q to pn, kq
in which all edges are present?”. A lower bound for this problem would imply a similar lower

1.1. Contributions 15

bound for the shortest path problem and a quantum algorithm for it may contain ideas that
would be useful for a shortest path quantum algorithm.

Our results. We use our lower bound on the balanced parentheses language to show an
Ωpn1.5´εq lower bound for the connectivity problem on the directed 2D grid. This shows a
limit on quantum algorithms for finding edit distance through the reduction to shortest paths.
More generally, for an nˆ k grid (n ą k), our proof gives a lower bound of Ωpp

?
nkq1´εq.

The trivial upper bound is Opnkq queries, since there are Opnkq variables. There is no
nontrivial quantum algorithm, except for the case when k is very small. Then, the connectivity
problem can be solved with Op

?
n logk nq quantum queries [Kl,e17] 3 but this bound becomes

trivial already for k “ Ωp logn
log lognq.

For the undirected 2D grid, we show a lower bound of Ωppnkq1´εq, whenever k ě logn.
Thus, the naive algorithm is almost optimal in this case. We also extend both of these
results to higher dimensions, obtaining a lower bound of Ωppn1n2 . . . ndq

1´εq for an undirected
n1 ˆ n2 ˆ . . . ˆ nd grid in d dimensions and a lower bound of Ωpnpd`1q{2´εq for a directed
nˆ nˆ . . .ˆ n grid in d dimensions.

In a recent work, an Ωpn1.5q lower bound for edit distance was shown by Buhrman et al.
[BPS19], assuming a quantum version of the Strong Exponential Time hypothesis (QSETH).
As part of this result they give an Ωpn1.5q query lower bound for a different path problem on
a 2D grid. Then QSETH is invoked to prove that no quantum algorithm can be faster than
the best algorithm for this shortest path problem. Neither of the two results follow directly
one from another, as different shortest path problems are used.

3Aaronson et al. [AGS18] also give a bound of Op
?
n logm´1 nq but in this case m is the rank of the

syntactic monoid which can be exponentially larger than k.

Chapter2Preliminaries

2.1 Basic Notations
N is the set of non negative integers. Z is the set of integers. R is the set of real numbers.
C is the set of complex numbers. Zn is the ring of residue classes modulo n. The vectors
are written in bold. For any finite set U , its number of elements is #U . For any measurable
subset S Ď Rn, its volume is volpSq. The Euclidean norm of a vector v P Rn is }v}. We
denote by Bnpc, Rq the n-dimensional Euclidean ball of radius R and center c, whose volume
is volpBnpRqq “ Rn πn{2

Γpn{2`1q . If c is omitted, we mean c “ 0. The distance between a point x
and a set S is defined by distpx, Sq :“ inft}x´ y} : y P Su. We denote by Epq the expectation
and Vpq the variance of a random variable. We denote by ln the natural logarithm and log the
logarithm in base 10. We make frequent use of the usual o and O notation for asymptotics.
We also use the soft-O notation that removes polylogarithmic factors: fpnq “ rOpgpnqq if and
only if Dk P N such that fpnq “ Opgpnq logkpgpnqqq. The Hamming weight of a vector e P Rn
is the number of coefficients that are different from the zero.

2.2 Quantum Computing

0Image from SMBC’s “The Talk” and Scott Aaronson.

17

https://www.smbc-comics.com/comic/the-talk-3

18 Chapter 2. Preliminaries

2.2.1 Introduction
In this thesis, when it comes to quantum algorithms, we always assume that we are working
in some Hilbert space H of some finite-dimension n, and we use Dirac’s bra-ket notation. A
vector x “ px1, ¨ ¨ ¨ , xnq P H is denoted as |xy “ Σixi|iy, where p|iyqiPt0,¨¨¨ ,n´1u is the canonical
basis of H . This notation comes from the inner product xx|yy, which can be seen as a linear
form xx| applied to a vector |yy.

A qubit is a unit vector in the Hilbert space C2 with two basis vectors t|0y, |1yu. It can be
denoted as |φy “ α0|0y ` α1|1y, where α0, α1 are complex numbers such that |α0|

2 ` |α1|
2 “ 1.

We can measure |φy in the basis t|0y, |1yu, this will output |0y with probability |α0|
2 and |1y

with probability |α1|
2. The αi’s are called the amplitudes of the |iy’s in |φy.

We can combine different Hilbert spaces using tensor product: if |0y, |1y, ¨ ¨ ¨ , |n´ 1y are
an orthonormal basis of space HA and |0y, |1y, ¨ ¨ ¨ , |m´ 1y are an orthonormal basis of space
HB, then the tensor product space H “ HA bHB is an nm-dimensional space spanned by
the set of states t|iy b |jy | i P t0, ¨ ¨ ¨ , n ´ 1u, j P t0, ¨ ¨ ¨ ,m ´ 1uu. We often write |iy|jy
instead of |iy b |jy for convenience. This allows us to consider systems with n qubits in the
Hilbert space C2n “ pC2qbn. Intuitively, a quantum state in this space can be viewed as a
superposition of the 2n possible values of n classical bits. More formally, a quantum state |φy
is of the form

ř

w“w1¨¨¨wnPt0,1un αw|wy where |wy “ |w1y b ¨ ¨ ¨ b |wny. We can measure |φy in
the basis p|wyqw“w1¨¨¨wnPt0,1un which is called the computational basis: it will output |wy with
probability |αw|2.

Instead of measuring |φy, we can also apply some operation to it and change it to some
other state |ψy “

ř

i βi|iy. Quantum mechanics only allows unitary operators. Any unitary
transformation is a reversible operation. For a unitary operator U , we denote by U : its
conjugate transpose. Since U is unitary, U : “ U´1. This quantum reversible computation
may seem at odds with how we define classical circuits, using irreversible gates such as OR
and AND. But in fact, any classical computation can be made reversible by replacing any
irreversible gate x ÞÑ fpxq by the reversible gate px, yq ÞÑ px, y ` fpxqq, and running it on
the input px, 0q and producing px, fpxqq. In other words, we can make classical computation
reversible by storing all intermediate steps of the computation. This modification is not free
of cost, as Corollary 2.2 shows.

Quantum gates. In the following, we present some elementary quantum unitary operators
that acts on a small number of qubits. We call them quantum gates and they can be represented
by matrices in the canonical basis |0y, |1y. The Hadamard gate is

H “
1
?

2

„

1 1
1 ´1

and it satisfies: H|0y “ 1?
2p|0y ` |1yq and H|1y “

1?
2p|0y ´ |1yq. The T gate is:

T “

„

1 0
0 eiπ{4

.

An example of a 2-qubit gate is the controlled-not gate called CNOT. Depending on whether
the first bit of the input is 1, it negates the second bit or does nothing, ie CNOT|0y|by “ |0y|by

2.2. Quantum Computing 19

and CNOT|1y|by “ |1y|1´ by. The CNOT gate can be represented by the following matrix
form in the basis |0y b |0y, |0y b |1y, |1y b |0y, |1y b |1y:

CNOT “

»

—

—

–

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

fi

ffi

ffi

fl

.

The Toffoli gate, a three-qubit gate, is defined for any a, b, c P t0, 1u by

Toffoli|ay|by|cy “
#

|ay|by|1‘ cy if a “ b “ 1;
|ay|by|cy otherwise.

Universality. It is known that the set of all 1-qubit operations together with the 2-qubit
CNOT gate is universal, meaning that any unitary operator can be built from these gates.
However, in practice, we cannot build all 1-qubit operators to infinite precision since there
are continuously many of them. We restrict ourselves to a universal set of gates in the sense
of approximation, meaning that any unitary can be approximated arbitrarily well using only
these gates. This is the case for the set of gates H, CNOT and T.

The Toffoli gate together with ancilla preparation is universal for classical computation.
This means that any classical circuit can be implemented by a quantum one. It comes from
the fact that the NAND gate is universal for classical computing and can be implemented by
a Toffoli gate: Toffoli|ay|by|1y “ |ay|by|NANDpa, bqy. However, the total number of quantum
elementary gates used can be higher than the classical one because of the reversibility of the
quantum computation (see Corollary 2.2).

Quantum circuit model. In the quantum circuit model, the time complexity is the circuit
size, which is the total number of elementary quantum gates. The space complexity is the
number of qubits used. We will assume that the elementary quantum gates come from a fixed
universal set. Up to constant factors, the complexity does not depend on the universal set
that we have chosen.

Given a function f : t0, 1un Ñ t0, 1um, we say that a quantum circuit, implementing a
unitary U that acts on n ` ` ` m qubits, computes f with probability α if for every x, a
measurement on the last m qubits of U |xy

ˇ

ˇ0`
D

|0my outputs fpxq with probability at least α.
The exact location of the qubits that we measure for the output actually does not matter,
since we can also apply SWAP gates (implementable by elementary gates) to swap them to the
m last positions. The extra ` qubits that are not part of the input/output are called ancilla
qubits (or work space).

Quantum query model. We sometimes use the standard form of the quantum query model:
given a unitary O, we say that a circuit computes f with oracle access to O if by augmenting
the model with the unitary O, we can construct a circuit computing f . The number of queries
on O is the number of unitary O in the circuit. If we find an efficient algorithm for a problem
in query complexity and we are given an explicit circuit realizing the black-box transformation
of the oracle O, we will have an efficient algorithm for an explicit computational problem.

20 Chapter 2. Preliminaries

Quantum algorithm. So far, we have focused on circuits computing a function with a
fixed inputs/outputs size. In general, the input/output size of a problem is not fixed and we
need a family of circuits. Furthermore, it is common to alternate between phases of classical
computations and quantum computations. In principle, it is always possible to turn a classical
computation into a quantum one and combine all quantum algorithms into one quantum circuit
with a single measurement at the end. Nevertheless, this transformation has a non-negligible
cost (Corollary 2.2) that we want to avoid.

We say that a quantum algorithm computes a function F : t0, 1u˚ Ñ t0, 1u˚ with probability
α if there is a classical algorithm A with quantum evaluation that outputs F pwq with probability
α on input w. By quantum evaluation we mean that the algorithm can, any number of times
during the computation, build a quantum circuit and evaluate it, that is measure the state
U |0y where U is the unitary implemented by the circuit. The time complexity T pnq is the
classical time complexity of A plus the time complexity of the circuits (that is the number of
gates). The classical space complexity Spnq is the space complexity of A (ignoring quantum
evaluations). The quantum space complexity Qpnq is the maximal space complexity of all
circuits (that is the maximum number of qubits used). In the natural way, we say that a
quantum algorithm has oracle access to O if it produces circuits with oracle access to O. The
query complexity of the algorithm is the sum of the query complexity of the circuits.

It is sometimes necessary to consider relations instead of functions, for instance in search
problems where there are several possible answers. Given a relation R Ď t0, 1u˚ ˆ t0, 1u˚,
we say a quantum algorithm solves the relation problem R with probability α if there is a
quantum algorithm computing a function F : t0, 1u˚ Ñ t0, 1u˚ with probability α such that
px, F pxqq P R for all inputs x.

Now that the quantum model of computation is properly defined, we can express the fact
that every classical computation can be implemented by a quantum computer, although at a
non-negligible cost.

Theorem 2.1 ([Ben89, LS90]). Given any ε ą 0 and any classical computation with running
time T and space complexity S, there exists an equivalent reversible classical computation with
running time OpT 1`ε{Sεq and space complexity OpSp1` lnpT {Sqqq.

Corollary 2.2. Given any ε ą 0 and any classical computation with running time T and
space complexity S, there exists an equivalent quantum circuit of size OpT 1`ε{Sεq using
OpSp1` lnpT {Sqqq qubits.

Quantum Errors. Quantum algorithms are probabilistic in nature and therefore prone
to return wrong results with small probability. But quantum circuits also suffer from two
more intrinsic sources of errors in quantum circuits: universal gates approximation and noise.
Recall that a set of gate is universal if any unitary operator can be approximated arbitrarily
well. Hence, by definition, a quantum circuit built from universal gates will only be an
approximation of the true transformation that we analyze. Furthermore, quantum circuits do
not exist in isolation and are subject to decoherence when interacting with their environments.
This process, as well as other quantum noises, can be modeled by several types of faults or
noise and is the subject of active research. See e.g. [HLGJ20] for example for a study on
the effects of decoherence on QRACM (defined in the next section) in full generality. One

2.2. Quantum Computing 21

important question in this area is whether one can build efficient quantum error correction
to achieve fault-tolerant quantum computations (see e.g. [Got09] for an introduction on this
topic). In this thesis, we will ignore all errors in quantum circuits. This assumption is justified
by the theoretical nature of the problems studied and the fact that the cost of error correction
is negligible compared to the cost of our algorithms (which is always exponential).

2.2.2 Access to Memory
All the quantum algorithms considered in this thesis run in the quantum circuit model.
“Baseline” quantum circuits are simply built using a universal quantum gate set. A requirement
for many quantum algorithms to process data efficiently is to be able to access classical data in
quantum superposition. Such algorithms use quantum random-access memory, often denoted
as qRAM, and require the circuit model to be augmented with the so-called “qRAM gate”.
These qRAM gates are assumed to have a time complexity polylogarithmic in the amount
of classical data stored, so that each call is not time consuming. This model is inspired by
the classical RAM model where we usually assume memory access in time Op1q. Algorithms
for subset-sum, lattice sieving and generic decoding problem using qRAM gates achieve time
speedups with respect to their classical counterparts.

Given an input register 1 ď i ď r, which represents the index of a memory cell, and many
quantum registers |x1, . . . xry, which represent stored data, the qRAM gate fetches the data
from register xi, possibly in superposition:

|iy|x1, . . . xry|yy ÞÑ |iy|x1, . . . xry|y ‘ xiy .

This then enables various quantum data structures, such as the ones depicted in [BJLM13]
and [Amb07], with fast access, even if the queries and the data are superpositions. Following
the terminology of [Kup13], we consider three types of qRAMs:

• If the input i is classical, then this is the plain quantum circuit model. We can implement
it using a universal quantum gate set.

• If the xj are classical, we have classical memory with quantum random access (QRACM).
The qRAM gate becomes

|iy|yy ÞÑ |iy|y ‘ xiy .

• In general, we have quantum memory with quantum random access (QRAQM). This is
the most powerful quantum memory model where the data are also in superposition.

It is possible to implement a QRACM using a universal quantum gate set, albeit at a
considerable cost. Given a classical data set tx1, ¨ ¨ ¨ , xru, one can construct, in time Õprq,
a circuit using Õprq qubits that implements a QRACM for this data set. The obtained
circuit then allows query in the form |iy|yy ÞÑ |iy|y ‘ xiy and has circuit depth Oppolylogprqq
[GLM08, KP20, MGM20, HLGJ20]. To the best of our knowledge, no physical architecture of
circuit depth Oppolylogprqq has been proposed for the QRAQM model. Note that even low
depth implementation of QRACM has at least Ωprq gates, hence has time complexity at least
Ωprq by our definition. Therefore, the assumption that the qRAM gates have time complexity
polylogprq is very strong and corresponds to parallel evaluation of the circuit.

22 Chapter 2. Preliminaries

All known quantum algorithms for subset-sum with a quantum time speedup over the best
classical one require QRAQM. For comparison, speedups on heuristic lattice sieving algorithms
exist in the QRACM model [LMvdP15b, KMPM19], including the best one to date [Laa15a].

2.2.3 Quantum Search
One of the most well-known quantum algorithms is Grover’s unstructured search algo-
rithm [Gro96a]. Suppose we have a set of objects named t0, 1, . . . , N ´ 1u, of which some
are targets. We say that an oracle O identifies the targets if, in the classical (resp. quantum)
setting, Opiq “ 1 (resp. O|iy “ ´|iy) when i is a target and Opiq “ 0 (resp. O|iy “ |iy)
otherwise. Given such an oracle O, the goal is to find a target j P t0, 1, . . . , N ´ 1u by making
queries to the oracle O. Note that this is a relation problem.

It is very common in quantum search problems to assume that the oracle identifies targets
by swapping the phase: O|iy “ p´1qbi |iy where bi “ 1 for targets and bi “ 0 for other
objects. At the same time, many quantum algorithms1 (and QRACM in particular) provide a
transformation O1 such that O1|iy|0y “ |iy|biy. The latter can always be transformed into the
former by applying O1 to the state |´y “ 1?

2p|0y ´ |1yq and discarding the second qubit.
In the search problem, one tries to minimize the number of queries to the oracle. In

the classical case, one needs OpNq queries to solve such a problem. Grover, on the other
hand, provides a quantum algorithm, that solves the search problem with only Op

?
Nq

queries [Gro96b] when there is one target, and Op
a

N{tq when there are exactly t targets.
When the number of targets is unknown, Brassard et al. [BBHT05] provided a modified Grover
algorithm that solves the search problem with Op

a

N{tq expected queries and Op
?
Nq queries

in the worst case with some arbitrarily small probability of failure. Furthermore, virtually all
quantum search algorithms not only return a solution to the search problem, but one solution
among the t possibilities, uniformly at random. This property can be used to find all solutions
(see Remark 2.5). We present here a generalization of Grover’s algorithm called amplitude
amplification [BHMT02].

Theorem 2.3 (Amplitude amplification, from [BHMT02]). Suppose we have a set of N objects
of which some are targets. Let O be a quantum oracle that identifies the targets. Let A be a
quantum circuit using no intermediate measurements, ie A is reversible. Let a be the initial
success probability of A, that is the probability that a measurement of A|0y outputs a target.
There exists a quantum algorithm that calls O

´

a

1{a
¯

times A, A: and O, uses as many
qubits as A and O, and outputs a target with probability greater than 1´ a.

Grover’s algorithm is a particular case of this theorem where A produces a uniform
superposition of all objects, in which case a “ 1

N . The theorem then states that we can find a
target with probability 1´ 1

N using Op
?
Nq calls to the oracle Of .

As we will use quantum search as a subprocedure, we make some remarks to justify that,
up to additional polynomial factors in time, we can consider it runs with no errors and allows
to return all the solutions efficiently.
Remark 2.4 (Error in a sequence of quantum searches). Throughout this thesis, we will
assume that a quantum search in a search space of size S with T solutions runs in exact time

1This is in fact what we obtain when we transform a classical circuit into a quantum circuit.

2.2. Quantum Computing 23

a

S{T . In practice, there is a constant overhead, but since S and T are always exponential
for the problems considered in this thesis, the difference is negligible. Furthermore, this is a
probabilistic procedure and it will return a wrong result with a probability of the order

a

T {S.
As we can test if an error occurs, by checking if the returned object is marked, we can make it
negligible by redoing the quantum search polynomially many times.

Remark 2.5 (Finding all solutions). Assume that a quantum search algorithm returns a solution
among the T possibilities, selected uniformly at random. Finding all solutions is then an
instance of the coupon collector problem with T coupons [NS60]; all coupons are collected
after OpT logpT qq trials on average. However, in the QRACM model, this logarithmic factor
disappears: we can run the search of Lemma 2.3 with a new test function that returns 0 if the
output of A is incorrect, or if it is correct but has already been found. The change to the
runtime is negligible, and thus, we collect all solutions with only OpT q searches.

It is also possible to find the minimum of a set of elements stored in the QRACM model
using less queries than in the classical case.

Theorem 2.6 ([DH96], Theorem 1). Let O be a quantum oracle such that O|iy|0y “ |iy|xiy
for some N numbers x1, . . . , xN . Then there exists a quantum algorithm that finds an index
j such that xj is the minimum among all xi with probability at least 1{2 and with Op

?
Nq

queries to O.

In particular, the assumption of the previous theorem can immediately be satisfied in the
QRACM model, by using a qRAM to store x1, . . . , xN .

2.2.4 Quantum Walk Algorithms
Quantum walks can be used to generalize quantum search. They allow to obtain polynomial
speedups on many partially structured problems, with sometimes optimal results (e.g. Ambai-
nis’ algorithm for element distinctness [Amb07]). In this section, we will consider walks in the
MNRS framework [MNRS11].

Let G “ pV,Eq be an undirected, connected, regular2 graph, such that some vertices of G
are “marked”. Let ε be the fraction of marked vertices, that is a vertex chosen uniformly at
random has a probability ε of being marked. The eigenvalues of a graph are the eigenvalues
of its adjacency matrix. Let δ be the spectral gap of G, which is defined as the difference
between its two largest eigenvalues.

In a classical random walk on G, we can start from any vertex and reach the stationary
distribution in approximately 1

δ random walk steps. Then, such a random vertex is marked
with probability ε. Assume that we have a procedure Setup that samples a uniform vertex to
start with in time S, Check that verifies if a vertex is marked or not in time C and Update
that performs a walk step in time U, then we will have found a marked vertex in expected
time S` 1

ε

`1
δU` C

˘

.
Quantum walks reproduce the same process, except that their internal state is not a

vertex of G, but a superposition of vertices. The walk starts in the uniform superposition
ř

vPV |vy, which must be generated by the quantum version of the Setup procedure. It repeats
2This is sufficient for our purposes and simplifies the analysis. The MNRS framework does not need this

assumption.

24 Chapter 2. Preliminaries

a

1{ε iterations using U and C that, similarly to amplitude amplification, move the amplitude
towards the marked vertices. An update produces, from a vertex, the superposition of its
neighbors. Each iteration does not need to repeat 1

δ vertex updates and, instead, takes a time
equivalent to

a

1{δ updates to achieve an almost uniform distribution.

Theorem 2.7 (Quantum walk [MNRS11]). Let G “ pV,Eq be a regular graph with spectral
gap δ ą 0. Let ε ą 0 be a lower bound on the probability that a vertex chosen uniformly at
random of G is marked. For a random walk on G, let S,U,C be the setup, update and checking
cost. Then there exists a quantum algorithm that with constant probability finds a marked
vertex in time

S` 1
?
ε

ˆ

1
?
δ

U` C
˙

.

2.2.5 Quantum Walk on Trees
In the MNRS framework, the graph is assumed to be known in advance, and moreover the
initial state of the quantum walk is the stationary distribution of the corresponding random
walk. Since the graph is also assumed to be regular for our purposes, the stationary distribution
is simply the uniform distribution among all vertices.

Here we would like to use quantum walks in a context where the input graph is a tree
defined implicitly by a backtracking algorithm and hence is not known in advance, and where
the walk starts at the root of the tree. Furthermore, the tree may no longer be regular.

Quantum Tree Algorithms. We consider a tree T of an unknown structure with a given
root r, to which we are given local classical or quantum query access in the following way:

1. we are given an oracle which, given a node v, returns the number of children dpvq for
this node (if dpvq “ 0, v is called a leaf);

2. we are given an oracle which, given a node v and i P rdpvqs, returns the i-th child of v.

We denote by V pT q its set of nodes, LpT q its set of leaves, dpT q “ maxvPV pT q dpvq its degree
and npT q an upper-bound of its depth. When there is no ambiguity, we use d and n directly
without the argument T . We also denote by #T the number of nodes of the tree T .

Trees of unknown structure can come up in backtracking algorithms. Backtracking is
a classical algorithm for solving problems such as constraint satisfaction problems (CSP),
by performing a tree search in depth-first order. For CSP, each node represents a partial
assignment and its children say how to extend this partial assignement. There is an oracle
P : V pT q Ñ ttrue, false, indeterminateu verifying whether the constraint is satisfied, such
that Ppvq P ttrue, falseu iff v is a leaf. A node v P V pT q is called marked if Ppvq “ true.
Here, T is the tree corresponding to a backtracking algorithm listing all solutions of the CSP.
Note however, that a classical backtracking algorithm might find a solution in substantially
less than #T steps. Montanaro [Mon15] studied the quantum case:

Theorem 2.8 ([Mon15]). There is a quantum algorithm ExistSolutionpT , T,P, n, εq which
given ε ą 0, a tree T such that dpT q “ Op1q, a black box function P, and upper bounds T and
n on the number of nodes and the depth of T , determines if T contains a marked node by

2.2. Quantum Computing 25

making Op
?
Tn logp1{εqq queries to T and to the black box function P, with a probability of

correct answer ě 1´ ε. It uses Op1q auxiliary operations per query and uses polypnq qubits.

Theorem 2.9 ([Mon15]). There is a quantum algorithm FindSolutionpT ,P, n, εq which,
given ε ą 0, a tree T such that dpT q “ Op1q, a black box function P, and an upper bound n on
the depth of T , outputs x such that Ppxq is true, or “not found” if no such x exists by making
Op
?

#T n3{2 logpnq logp1{εqq queries to T and to the black box function P, with correctness
probability at least 1´ ε. It uses Op1q auxiliary operations per query and uses polypnq qubits.

Notice that Th. 2.9 does not require an upper-bound on #T as input.

Remark 2.10. Montanaro’s algorithm has the following drawback. Since classical backtracking
algorithms are usually optimized to search the most promising branches first, a classical search
algorithm may find a marked vertex after examining T 1 ! #T nodes of the tree. Since the
running time of Montanaro’s algorithm depends on #T , the quantum speedup that it achieves
can be much less than quadratic (or there might be no speedup at all). This problem is
dealt with in [AK17] where the authors give a quantum algorithm making Õp

?
T 1n3{2q queries

to find one marked node, where T 1 is the number of nodes actually visited by the classical
algorithm. We will not need this improved algorithm in this thesis.

Remark 2.11. A unified framework for quantum walk has recently been proposed in [AGJ19]
where both the MNRS quantum walk framework and the quantum backtracking algorithms
on trees are included.

Ambainis and Kokainis [AK17] gave a quantum algorithm to estimate the size of a tree,
under the same local black box query access model, with input a tree T and a candidate upper
bound T0 on #T . The algorithm must output an estimate for #T , i.e. either a number of
T̂ ď T0 or a claim “T contains more than T0 vertices”. The estimate is δ-correct if:

1. the estimate is T̂ ď T0 which satisfies |T ´ T̂ | ď δT where T is the actual number of
vertices;

2. the estimate is “T contains more than T0 vertices” and the actual number of vertices T
satisfies p1` δqT ą T0.

An algorithm solves the tree size estimation problem up to precision 1˘ δ with correctness
probability at least 1´ ε if for any T and any T0, the probability that it outputs a δ-correct
estimate is at least 1´ ε.

Theorem 2.12 ([AK17]). There is a quantum algorithm TreeSizeEstimationpT , T0, δ, εq
which, given ε ą 0, a tree T , and upper bounds d and n on the degree and the depth of T ,
solves tree size estimation up to precision 1 ˘ δ, with correctness probability at least 1 ´ ε.
It makes O

´?
nT0
δ1.5 d log2p1

ε q

¯

queries to T and OplogpT0qq non-query gates per query. The
algorithm uses polypn, logpdq, logpT0q, logpδq, logplogp1{εqqq qubits.

26 Chapter 2. Preliminaries

2.3 Probability
Probability distributions. Given two random variables X and Y on a set E, we denote
by dSD the statistical distance between X and Y , which is defined by

dSDpX,Y q “
1
2

ÿ

zPE

ˇ

ˇ

ˇ
Pr
X
rX “ zs ´ Pr

Y
rY “ zs

ˇ

ˇ

ˇ

“
ÿ

zPE : PrX rX“zsąPrY rY“zs

´

Pr
X
rX “ zs ´ Pr

Y
rY “ zs

¯

.

We write X is ε-close to Y to denote that the statistical distance between X and Y is at most
ε. Given a finite set E, we denote by UE a uniform random variable on E, i.e. for all x P E,
PrUE rUE “ xs “ 1

|E| .

Data processing inequality. When analyzing the output distribution of an algorithm, it
is often convenient to assume that the input distribution is ideal (e.g. uniform). On the other
hand, we will want to run the algorithm on non-ideal input distribution (e.g. with a slight
deviation from uniform). In this case, the output distribution will deviate from the ideal
output distribution and it is important to quantify this divergence. The statistical distance
satisfies the following useful inequality, known as the data processing inequality:

dSDpfpXq, fpY qq ď dSDpX,Y q

for any two distributions X and Y and any (possibly randomized) algorithm f . In other words,
the error does not increase under the application of f .

Gaussian distribution. The cumulative distribution function (CDF) of the Gaussian
distribution of expectation 0 and variance σ2 is 1

2p1` erfp x
σ
?

2qq where the error function is
erfpzq :“ 2?

π

şz
0 e
´t2dt. The multivariate Gaussian distribution over Rm of parameter σ selects

each coordinate with a Gaussian distribution.
We need the following lemma on the distribution of the vector inner product which directly

follows from the Leftover Hash Lemma [ILL89].

Lemma 2.13. Let G be a finite abelian group, f be a positive integer and Y Ď t0, 1uf . Define
the inner product x¨, ¨y : Gf ˆ Y Ñ G by xx, yy “

ř

i xiyi for all x P Gf , y P Y. Let X, Y be
independent and uniform random variables on Gf , Y respectively. Then

dSDppxX,Y y, Xq, pUG, Xqq ď
1
2 ¨

d

|G|
|Y|

,

where UG is uniform in G and independent of X.

We will also need the Chernoff-Hoeffding bound [Hoe63].

Lemma 2.14. Let X1, . . . , XM be the independent and identically distributed random boolean
variables of expectation p. Then for ε ą 0,

Pr
«

1
M

M
ÿ

i“1
Xi ď pp1´ δq

ff

ď

ˆ

e´δ

p1´ δq1´δ

˙pM

.

2.4. Lattices 27

2.4 Lattices
Lattices. A lattice L is a discrete subgroup of Rm, or equivalently a set Lpb1, . . . ,bnq “
t
řn
i“1 xibi : xi P Zu of all integer combinations of n linearly independent vectors B “

tb1, . . . ,bnu Ă Rm. Such bi’s form a basis of L. Bases are not unique, one lattice basis
may be transformed into another one by applying an arbitrary unimodular transformation.
All the bases have the same number n of elements, called the dimension or rank of L, and
the same n-dimensional volume of the parallelepiped t

řn
i“1 aibi : ai P r0, 1qu they generate.

We call this volume the co-volume of L, denoted by covolpLq. It is also sometimes call the
determinant of the lattice, denoted by detL. This quantity is equal to the square root of the
determinant of the Gram matrix BT B: covolpLq “ detL “

?
det BT B. The lattice L is said

to be full-rank if n “ m. When the lattice is full rank, B is a square matrix and we have
covolpLq “ detL “ |detpBq|.

We denote by λ1pLq the first minimum of L, defined as the length of a shortest non-zero
vector of L.

For a rank n lattice L Ă Rm, the dual lattice, denoted L˚, is defined as the set of all points
in spanpLq that have integer inner products with all lattice points,

L˚ “ tw P spanpLq : @y P L, xw,yy P Zu .

Similarly, for a lattice basis B “ pb1, . . . ,bnq, we define the dual basis B˚ “ pb˚1 , . . . ,b˚nq to
be the unique set of vectors in spanpLq satisfying xb˚i ,bjy “ 1 if i “ j, and 0, otherwise. It
can be shown that L˚ is itself a rank n lattice and B˚ is a basis of L˚.

In what follows, unless explicitely stated, we consider full rank lattices.

Orthogonalization. For a basis B “ pb1, . . . ,bnq of a lattice L and i P t1, . . . , nu, we denote
by πi the orthogonal projection on spanpb1, . . . ,bi´1q

K. The Gram-Schmidt orthogonalization
of the basis B is defined as the sequence of orthogonal vectors B‹ “ pb‹1, . . . ,b‹nq, where
b‹i :“ πipbiq. We can write each bi as b‹i `

ři´1
j“1 µi,jb‹j for some unique µi,1, . . . , µi,i´1 P R.

Thus, we may represent the µi,j ’s by a lower-triangular matrix µ with unit diagonal. πipLq is
a lattice of rank n` 1´ i generated by πipbiq, . . . , πipbnq, with covolpπipLqq “

śn
j“i

›

›b‹j
›

›.

Gaussian Heuristic. The classical Gaussian Heuristic provides an estimate on the number
of lattice points inside a “nice enough" set:

Heuristic 2.15. Given a full-rank lattice L Ď Rn and a measurable set S Ď Rn, the number
of points in S X L is approximately volpSq{covolpLq.

Both rigorous results and counter-examples are known (see [AN17]). One should therefore
experimentally verify its use, especially for pruned enumeration which relies on strong versions
of the heuristic, where the set S is not fixed, depending on a basis of L.

Discrete Gaussian Distribution. For any s ą 0, define ρspxq “ expp´π‖x‖2{s2q for all
x P Rn. We write ρ for ρ1. For a discrete set S, we extend ρ to sets by ρspSq “

ř

xPS ρspxq.
Given a lattice L, the discrete Gaussian DL,s is the distribution over L such that the probability
of a vector y P L is proportional to ρspyq:

Pr
X„DL,s

rX “ ys “
ρspyq

ρspLq
.

28 Chapter 2. Preliminaries

Kissing Number and related quantities. For any lattice L Ă Rn and d ą 0, let NpL, rq
denote the number of nonzero lattice vectors of length at most r. A natural question is to
bound this quantity in terms of r. When r ă λ1pLq, only the origin lies inside the ball so
NpL, rq “ 0. When r “ λ1pLq, this quantity is known as the kissing number τpLq of the
lattice:

τpLq “ tx P Rn : }x} “ λ1pLqu.

Finally when r Ñ 8, NpL, rq “ rnvolpBnp1qq
det L ` oprnq by the geometric interpretation of the

determinant of a lattice. The precise behavior for intermediate values of r, however, is unclear
and for that reason we introduce the quantity

γpLq “ inftγ : @r ě 1, NpL, rλ1pLqq ď γ ¨ rnu. (2.1)

It is clear by the definition that γpLq ě τpLq. The best known upper bound on this quantity
comes from the breakthrough work of Kabatyanskii and Levenshtein [KL78] which implies
[PS09] that

γpLq ď 20.401n`opnq.

The same work also implies that τpLq ď 20.401n`opnq although we will not need it in this thesis.
Recently, in a breakthrough result, Serge Vlăduţ [Vlă19] gave a construction of an infinite
set of lattices such that their kissing number is greater than 20.0338n`opnq. This is the first
(and only known) construction of a family of lattices with kissing number 2Ωpnq. Given this
result (and the fact that it was hard to find such a family of lattices), one might conjecture
that τpLq “ cn`opnq for some constant c much smaller than 20.401. Moreover, in practice most
lattices have a much smaller kissing number which is often 2opnq. Given the close connection
between τpLq and γpLq, it is not unreasonable to conjecture that γpLq is also a 2opnq for most
lattices. In view of the fact that γpLq can be anywhere between 1 and 20.401n`op1q, we will
study the dependence of the time complexity of our algorithms on γpLq by introducing

βpLq “ γpLq1{n. (2.2)

The upper bound above can then be reformulated as βpLq ď 20.401`op1q for any lattice L.

Lattice problems. The following problem plays a central role in this thesis.

Definition 2.16. For δ “ δpnq ě 0, σ a function that maps lattices to non-negative real
numbers, and m “ mpnq P N, δ-DGSmσ (the Discrete Gaussian Sampling problem) is defined as
follows: The input is a basis B for a lattice L Ă Rn and a parameter s ą σpLq. The goal is to
output a sequence of m vectors whose joint distribution is δ-close to m independent samples
from DL,s.

We omit the parameter δ if δ “ 0, and the parameter m if m “ 1. We stress that δ bounds
the statistical distance between the joint distribution of the output vectors and m independent
samples from DL,s.

Definition 2.17. The search problem SVP (Shortest Vector Problem) is defined as follows:
The input is a basis B for a lattice L Ă Rn. The goal is to output a nonzero vector y P L
with minimum l2-norm, that is }y} “ λ1pLq.

2.4. Lattices 29

Definition 2.18. The search problem γ-approx-SVP (γ-Approximate Shortest Vector Problem)
is defined as follows: The input is a basis B for a lattice L Ă Rn and γ ą 1. The goal is to
output a nonzero vector y P L such that }y} ď γλ1pLq.

Definition 2.19. The search problem CVP (Closest Vector Problem) is defined as follows:
The input is a basis B for a lattice L Ă Rn and a target vector t P Rn. The goal is to output
a vector y P L such that }y´ t} “ distpt,Lq.

Definition 2.20. The search problem γ-approx-CVP (γ-Approximate Closest Vector Problem)
is defined as follows: The input is a basis B for a lattice L Ă Rn, a target vector t P Rn and
γ ą 1. The goal is to output a vector y P L such that }y´ t} ď γdistpt,Lq.

Definition 2.21. For α “ αpnq ă 1{2, the search problem α-BDD (Bounded Distance
Decoding) is defined as follows: The input is a basis B for a lattice L Ă Rn and a target vector
t P Rn with distpt,Lq ď α¨λ1pLq. The goal is to output a vector y P L with }y´t} “ distpt,Lq.

Note that while the other problems become more difficult as the approximation factor γ
becomes smaller, α-BDD becomes more difficult as α gets larger.

For convenience, when we discuss the running time of algorithms solving the above problems,
we will often ignore polynomial factors in the bit-length of the individual input basis vectors
(i.e. we consider only the dependence on the ambient dimension n).

Smoothing parameter. For a lattice L and ε ą 0, the smoothing parameter ηεpLq is the
smallest s such that ρ1{spL˚q ď 1` ε. Intuitively, this parameter provides the width beyond
which the discrete Gaussian measure on a lattice behaves like a continuous one. The smoothing
parameter has the following well-known property, namely that above the smoothing parameter,
the discrete Gaussian measure is essentially invariant under shifts.

Lemma 2.22 ([Reg05, Claim 3.8]). For any lattice L Ă Rn, c P Rn, ε ą 0, and s ě ηεpLq,

1´ ε
1` ε ď

ρspL` cq

ρspLq
ď 1 .

Corollary 2.23. Let L Ă Rn be a lattice, q be a positive integer, and let s ě ηεpqLq. Let C
be a random coset in L{qL sampled such that for all c P L{qL, PrrC “ qL ` cs “ ρspqL`cq

ρspLq .
Also, let U be a coset in L{qL sampled uniformly at random. Then

dSDpC,Uq ď 2ε .

Proof. By Lemma 2.22, we have that

ρspqLq ě ρspqL` cq ě
1´ ε
1` ερspqLq ,

for any c P L{qL and hence,

qnρspqLq ě
ÿ

cPL{qL
ρspqL` cq “ ρspLq

30 Chapter 2. Preliminaries

Therefore,
ρspqL` cq

ρspLq
ě

1´ ε
1` ε ¨

ρspqLq
ρspLq

ě
1´ ε
1` ε ¨

1
qn

.

We conclude that

dSDpC,Uq “
ÿ

cPL{qL : PrrC“csăPrrU“cs

pPrrU “ cs ´ PrrC “ csq

ď
ÿ

cPL{qL : PrrC“csăPrrU“cs

PrrU “ cs

ˆ

1´ 1´ ε
1` ε

˙

ď
ÿ

cPL{qL
PrrU “ cs

2ε
1` ε

ď
2ε

1` ε ,

as needed.

Lemma 2.24 ([CDLP13, Lemma 2.4]). For any lattice L Ă Rn, ε P p0, 1q and k ą 1, we have
kηεpLq ą η

εk2 pLq

The following lemma shows that there is a relation between the first minimum of a lattice
and the smoothing parameter of its dual lattice.

Lemma 2.25 (Variant of [ADRS15, Lemma 6.1]). For any lattice L Ă Rn and ε P p0, 1q,
c

lnp1{εq
π

ă λ1pLqηεpL˚q ă
c

βpLq2n
2πe ¨ ε´1{n ¨ p1` op1qq, (2.3)

and if ε ď pe{βpLq2 ` op1qq´
n
2 , we also have

c

lnp1{εq
π

ă λ1pLqηεpL˚q ă
c

lnp1{εq ` n ln βpLq ` opnq
π

. (2.4)

as n tends to infinity.

Remark 2.26. As noted in [ADRS15] below Lemma 6.1, the inequality (2.3) actually holds for
all ε P p0, 1q so we dropped the condition in the first case.

Remark 2.27. In Lemma 6.1 of [ADRS15], β comes from Lemma 4.2 of the same paper and
only needs to satisfy the equation |L X Tr| ď βn`opnqrn for all r where Tr “ tx P Rn : r ď
}x} ď p1` 1

nqru, assuming the lattice is normalized so that λ1pLq “ 1. A trivial upper bound
on |L X Tr| is NpL, r1q, the number of point in L of radius at most r1 “ p1 ` 1

nqr. By our
definitions (2.1) and (2.2), this is bounded by γpLq

`

p1` 1
nqr

˘n
ď βpLqnern and therefore we

can replace β by our βpLq.

Micciancio and Peikert [MP13] showed the following result about the distribution resulting
from the sum of many Gaussian samples. Essentially, above the smoothing parameter, the
sum of independent Gaussian samples is very close to a Gaussian distribution.

2.4. Lattices 31

Theorem 2.28 ([MP13, Theorem 3.3]). Let L be an n-dimensional lattice, z P Zm a nonzero
integer vector, si ě

?
2}z}8 ¨ ηεpLq, and L ` ci arbitrary cosets of L for i “ 1 ¨ ¨ ¨ ,m. Let

yi be independent vectors with distributions DL`ci,si, respectively. Then the distribution of
y “

řm
i“1 ziyi is mε close to DY,s, where Y “ gcdpzqL`

řm
i“1 zici, and s “

a

ř

pzisiq2.

We will need the following theorems to sample vectors from a discrete Gaussian distribution
with a large width.

Theorem 2.29 ([ADRS15, Proposition 2.17]). For any ε ď 0.99, there is a randomized
algorithm that takes as input a lattice L P Rn, M P Zą0 (the desired number of output
vectors), and s ą 2n log logn{ logn ¨ηεpLq, and outputs M independent samples from DL,s in time
M ¨ polypnq.

We need to recall the definition of the honest Discrete Gaussian Sampling problem,
introduced in [ADRS15].

Definition 2.30 ([ADRS15, Definition 5.1]). For ε ě 0, σ a function that maps lattices
to non-negative real numbers, and m P N, the honest Discrete Gaussian Sampling problem
ε-hDGSmσ is defined as follows: the input is a basis B for a lattice L Ă Rn and a parameter
s ą 0. The goal is for the output distribution to be ε´close to Dm1

L,s for some independent
random variable m1 ě 0. If s ą σpLq then m1 must be equal to m.

Theorem 2.31 ([ADRS15, Theorem 5.11]). Let σ be the function that maps a lattice
L to

?
2η1{2pLq. Then, there is an algorithm that solves expp´Ωpκqq-hDGS2n{2

σ in time
2n{2`polylogpκq`opnq for an κ ě Ωpnq.

Lemma 2.32 ([ADRS15, Lemma 5.12]). There is a randomized polynomial-time algorithm
that takes as input a lattice L Ă Rn of rank n and an integer a with n{2 ď a ă n and
returns a super lattice L1 Ą L of index 2a with L1 Ď L{2 such that for any ε P p0, 1q, we have
ηε1pL1q ď ηεpLq{

?
2 with probability at least 1{2 where ε1 :“ 2ε2 ` 2pn{2q`1´ap1` εq.

More context about the above results is available in Section 3.1. We will also make heavy
use of the following reduction from α-BDD to DGS that was shown in [DRS14].

Theorem 2.33 ([DRS14, Theorem 3.1]). For any ε P p0, 1{200q, let φpLq ”
?

lnp1{εq{π´op1q
2ηεpL˚q .

Then there exists an algorithm that solves CVPφ using m ¨ polypnq arithmetic operations where
m “ Opn logp1{εq

?
ε

q. Moreover, the preprocessing consists of m vectors sampled from DL˚,ηεpL˚q.

Remark 2.34. We are going to use this reduction in the superpolynomial regime: typicallym will
be exponential in n. This leaves unclear the space complexity of the reduction. The reduction
works by evaluating a polynomial number of times functions of the form

řm
i“1 fipxq where each

fi is a polynomial time computable function that depends on the ith DGS sample. Furthermore,
all the complexities above are in terms of arithmetic operations, not bit complexity. If we
assume that all the DGS samples have polypnq bit-size then the reduction has time complexity
m ¨ polypnq and space complexity Oppolypnq ` logmq excluding the storage space of the m
vectors provided by the DGS. Finally, as noted in the proof of the theorem in [DRS14], only
the preprocessing is probabilistic and with probability at least 1´ 2´Ωpnq over the choice of
the samples, the algorithm will deterministically solve all CVPφ instances.

32 Chapter 2. Preliminaries

One drawback of the theorem above is that it requires a sampler for the discrete Gaussian
distribution exactly at the smoothing parameter ηεpLq which is generally not known. For these
reasons, we provide a workaround in the form of Theorem 2.40 in the next section.

Finally, the following theorem proved in [CCL18] shows how to solve SVP by an exponential
number of calls to a α-BDD oracle.

Theorem 2.35 ([CCL18, Theorem 8]). Given a basis matrix B Ă Rnˆn for lattice LpBq Ă Rn,
a target vector t P Rn, an α-BDD oracle BDDα with α ă 0.5, and an integer scalar p ą 0. Let
fαp : Znp Ñ Rn be

fαp psq “ ´p ¨ BDDαpL, pB s´ tq{pq `B s.

If distpt,Lq ď αλ1pLq, then the list m “ tfαp psq | s P Znpu contains all lattice points at distance
less than or equal to pαλ1pLq to t.

Remark 2.36. In the original statement in [CCL18], the list m contains all lattice points at
distance less than pαλ1pLq to t. However by inspecting the proofs, the list m also contains all
lattice points at distance pαλ1pLq to t.

2.5 Reduction from CVP to DGS
The goal of this section is to improve Theorem 2.33 to not requires a sampler for the discrete
Gaussian distribution exactly at the smoothing parameter ηεpLq. Indeed, we usually do not
know ηεpLq and it is a nontrivial problem to even estimate it [CDLP13]. It was claimed in
[ADRS15, Theorem 7.3] that the reduction still holds if we only provide a DGS oracle above
the smoothing parameter. Unfortunately, this is not entirely satisfactory for two reasons:
[ADRS15] contains no proof3 and the modified statement does not make it clear that the
parameters of the DGS instance do not depend on the CVP instance, like in Theorem 2.33.
For these reasons, we provide a self-contained proof in the form of Theorem 2.40 in the next
section. We first prove some technical lemmas on the discrete Gaussian distribution.

Lemma 2.37. For any lattice L Ă Rn, s ą 0 and r ě s
?
n{λ1pLq,

ρspLzBnprλ1pLqq ď rnβpLqn`opnqρspLzt0uqr
2
.

Proof. Let t “ 1 ` 1{n, R “ rλ1pLq, ri “ Rti and Ti “ Bnpri`1qzBnpriq for all i P N. Then
by definition of βpLq,

|LX Ti| ď |LXBnpri`1q| ď βpLqn`opnqprti`1qn

It follows that

ρspLzBnpRqq “
8
ÿ

i“0
ρspLX Tiq ď

8
ÿ

i“0
|LX Ti|e´π

r2
i
s2 ď βpLqn`opnq

8
ÿ

i“0
prti`1qne´π

R2

s2 t
2i

looooooooomooooooooon

“fpiq

where fpiq “ prti`1qne´π
R2

s2 t
2i
. But check that for all i P N,

fpi` 1q
fpiq

“ tne´π
R2

s2 t
2ipt2´1q

ď e1´2π R
2

ns2 ď e1´3π ă 1{2
3All the authors of [DRS14] are all in [ADRS15] so the statement is still probably true.

2.5. Reduction from CVP to DGS 33

where we have used that R ě s
?
n, t2 ´ 1 ď 3

n , t
n ď e and t2i ě 1. It follows that

ρspLzBnpRqq ď βpLqn`opnq ¨ 2 ¨ fp0q ď βpLqn`opnq ¨ 2prtqne´π
R2

s2 ď rnβpLqn`opnq ¨ e´π
r2λ1pLq
s2 .

On the other hand,

ρspLzt0uq ě e´π
λ1pLq2
s2

so the result follows immediately.

Lemma 2.38. For any c ą 1, for any lattice L Ă Rn, ε P p0, 1{eq, we have tηεpLq ď η
εt2eop1qpLq

where t “ 1` 1
nc .

Proof. Let s “ ηεpLq, M “ nc and t “ 1` 1
M with c ą 1. Let r “M and check that

?
n

sλ1pL˚q ď
b

nπ
lnp1{εq ď r (2.5)

by Lemma 2.25, for large enough n since ε ď 1{e. Let Γ “ pL˚zt0uq XBnprλ1pL˚qq, then

|Γ| ď βpL˚qn`opnqrn.

Now observe that

ρ1{tspL˚zt0uq “
ÿ

xPL˚zt0u
ρ1{tspxq “

ÿ

xPL˚zt0u
ρ1{spxq

t2

ě
ÿ

xPΓ
ρ1{spxq

t2 ě |Γ|
˜

1
|Γ|

ÿ

xPΓ
ρ1{spxq

¸t2

by Jensen’s inequality

“ |Γ|1´t2ρ1{spΓqt
2

“ |Γ|1´t2
`

ρ1{spL˚zt0uq ´ ρ1{spL˚zBnprλ1pL˚qq
˘t2

ě

´

βpL˚qn`opnqrn
¯1´t2´

ε´ βpL˚qn`opnqrnεr2
¯t2

by (2.5), Lemma 2.37 and since ρ1{spL˚zt0uq “ ε. Now observe that t2 ´ 1 ď 3{M and
´

βpL˚qn`opnqrn
¯´3{M

“ e´3n1´cplnβpL˚q`op1q`c lnnq “ e´3n1´cOplnnq “ e´op1q

since c ą 1. We also have that

βpL˚qn`opnqrnεr2
“ en lnβpL˚q`nc lnpnq`opnq´pr2´1q ln 1

ε ε

ď eOpn lnnq´n2c
ε since ε ď 1{e

ď eop1qε

for large enough n. It follows that

ρ1{tspL˚zt0uq ě eop1qpεeop1qqt
2
ě εt

2
eop1q

since t ď 2. Therefore we must have η
εt2eop1qpLq ě ts.

34 Chapter 2. Preliminaries

In order to state our theorem, we need to introduce a small variant on the notion of an
honest Gaussian sampler. We note that any discrete Gaussian sampler can trivially be turned
into a semi-honest sampler. The reason we need a semi-honest sampler is that we do not know
the value of ηε in general so we cannot guarantee that all calls will satisfy s ě σ when σ “ ηε.

Definition 2.39. For ε ě 0, σ a function that maps lattices to non-negative real numbers,
and m P N, the semi-honest Discrete Gaussian Sampling problem ε-shDGSmσ is defined as
follows: the input is basis B for a lattice L Ă Rn and a parameter s ą 0. The goal is for the
output distribution to be ε´close to Dm

L,s when s ě σpLq, and can be any distribution of m
lattices vectors otherwise.

Theorem 2.40. For any α ą 0, any ε ď minpe´nα , 1{200q, let φpLq ”
?

lnp1{εq{π´op1q
2ηεpL˚q . There

exists an algorithm that, on input L and with constant probability, constructs a deterministic
CVPφ oracle for L by doing polypnq calls to a 0.5-shDGSmηε sampler on the lattice L˚ and
requires storage space for m ¨ polypnq lattice vectors, where m “ Opn lnp1{εq

?
ε
q. Each call to the

oracle uses m ¨ polypnq arithmetic operations and storage space for Oppolypnq ` lnmq lattice
vectors excluding the storage space of the preprocessing.

Remark 2.41. Similarly to Remark 2.34, if we assume that all the DGS samples have polypnq bit-
size then the reduction has time complexitym¨polypnq and space complexity Oppolypnq`lnmq
excluding the storage space of the m vectors provided by the DGS. Furthermore, if basis vectors
of L have bit-size polypnq then we can ensure that all DGS samples have polypnq bit-size by
first generating more samples (say twice the amount) and throwing away all samples of norm
larger than exppΩpn2qq. Since the vectors are sampled from a Gaussian with width at most
exppOpnqq (since the basis vectors have size at most 2opnq, the error induced by throwing away
the tail of the distribution is smaller than 2´Ωpn2q.

Proof of Theorem 2.40. First we note that we can easily identify an interval I “ ra, bs such
that ηεpL˚q P ra, bs and b

a ď 2n`opnq. Indeed, by e.g. [Reg05, Lemma 2.11 and Claim 2.13] one
has

a

lnp1{εqπ ď λ1pLqηεpL˚q ď
?
n

so ηεpL˚q P 1
λ1pLq rc, ds where

d
c “

b

n
lnp1{εq “ Op

?
nq since ε ď 1{200. Furthermore, by running

the LLL algorithm on L and taking the length of the shortest basis vector, we obtain a length `
such that 2´n` ď λ1pLq ď `. It follows that ηεpL˚q P ra, bs :“ r c` ,

2nd
` s and

b
a “ 2n dc “ 2n`opnq.

Now let c “ 2`α, δ “ 1` 1
nc and N “

Q

lnpb{aq
ln δ

U

. Check that N “ polypnq since b
a “ 2n`opnq.

Furthermore, if we let si “ aδi for i “ 1, . . . , N then there must exists some i0 such that

1
δ si0 ď ηεpL˚q ď si0 . (2.6)

The preprocessing stage of the algorithm consists in calling the shDGSmσ sampler with parameter
si to obtain a lists Li of m vectors, for each i “ 1, . . . , N , and storing all the lists. This
requires N “ polypnq calls and we need to store m ¨ polypnq vectors.

We now describe the oracle for CVPφ. On input t P Rn, for each i “ 1, . . . , N , the oracle
calls the algorithm of Theorem 2.33 on input t and provides the list Li to the algorithm
in place of the DGS samples. Hence, for each i, we either obtain a lattice vector yi or the
algorithm from Theorem 2.33 fails and we let yi “ 0. Finally, the oracle returns the point

2.5. Reduction from CVP to DGS 35

closest to t in the list y1, . . . ,yN . The running time is clear so it remains to prove that the
algorithm actually solves CVPφ on L.

We first note that when called on si0 , the shDGSmσ sampler will return m vectors that
are 0.5´close to m samples from Dm

L,s since si0 ě σpLq “ ηεpL˚q by (2.6). Furthermore, by
Lemma 2.38 we have

tηεpL˚q ď η
εt2eop1qpL

˚q

where t “ 1` 1
nc “ δ. It follows by (2.6) that

ηεpLq ď si0 ď δηεpL˚q ď η
εδ2eop1qpL

˚q.

But the map ε ÞÑ ηεpLq is continuous and decreasing, so it follows that

si0 “ ηε1pL˚q for some εδ2
eop1q ď ε1 ď ε.

Therefore by Theorem 2.33 and Remark 2.34, with constant probability over the choice of Li0 ,
the (deterministic) algorithm of Theorem 2.33 solves CVPψ when given Li0 , where

ψpLq “
a

lnp1{ε1q{π ´ op1q
2ηε1pL˚q

assuming that m “ |Li0 | ě m1 :“ Opn lnp1{ε1q
?
ε1

q which holds because

n lnp1{ε1q
?
ε1

ď
nδ2 lnp1{εq ` opnq

?
εδ2eop1q

ď
n lnp1{εq ` n1´c lnp1{εq ` opnq

?
εεn´c{2eop1q

“ O

ˆ

n lnp1{εq
?
ε

˙

since n1´c ln ε “ n1´c`α “ op1q and εn´c{2 “ en
α´c{2 “ eop1q. It follows that, with constant

probability over the preprocessing, our oracle solves CVPψ. Check that εδ2
eop1q ě εδ

2`op1q

since ε ă 1
e and thus by Lemma 2.24,

η
εδ2eop1qpL

˚q ď η
εδ

2`op1qpL˚q ď pδ2 ` op1qqηεpL˚q ď p1` op1qqηεpL˚q

since δ “ 1` op1q. Hence we have

ψpLq ě
a

lnp1{εq{π ´ op1q
2p1` op1qqηεpL˚q

” φpLq.

Chapter3Discrete Gaussian Sampling and the
Shortest Vector Problem

The work in this chapter has been published at STACS 2021 [ACKS21] and is a joint work
with Divesh Aggarwal, Yanlin Chen and Rajendra Kumar. It also appears in part in Rajendra
Kumar’s PhD thesis [Kum21]. This chapter contains more introductory material over the
published version.

3.1 Introduction
A major class of algorithms to solve the Shortest Vector Problem is based on sieving. The
idea is to start with (exponentially) many lattices vectors and then combine several vectors
together to create shorter and shorter vectors. After sufficiently many iterations, the resulting
list will hopefully contain a shortest vector. There are several very different ways in which
vectors can be combined to create shorter vectors. The simplest one is to simply look
for pairs of vectors that are approximately antipodal: the sum will then be closer to the
origin than the original vectors [NV08]. This process can then be refined in many ways
[MV10, BGJ13, Laa15a, Laa15b, BDGL16]. These approaches generally rely on some heuristics
to analyse their performance. For example, they assume that the direction of the vectors is
uniform on the unit sphere, and the vectors in the sieved lists are independent.

The process described above is purely geometric: we litterally generate shorter vectors
by combining lattice vectors. Instead of maintaining a geometric invariant (length), one can
aim to maintain a probabilistic invariant (i.e. a distribution) that is loosely related to the
length of vectors. Such an invariant is the discrete Gaussian distribution: its parameter (the
width) is statistically related to the length of vectors drawn according to this distribution.
One can modify the sieving step so that if the list contains vectors drawn from a discrete
Gaussian of width σ then the resulting vectors should still follow a discrete Gaussian but of
smaller parameter, typically ασ for α ă 1. This approach has been very successful and has led
[Reg04, PS09, ADRS15, AS18b] to the currently fastest provable algorithm for SVP, running
in time 2n`opnq, which is based on discrete Gaussian sampling.

Even though sieving algorithms are asymptotically the fastest known algorithms for SVP,
the memory requirement, in high dimension, has historically been a limiting factor to run
these algorithms. Some recent works [Duc18, ADH`19] have shown how to use new tricks to
make it possible to use sieving on high-dimensional lattices in practice and benefit from their
efficient running time [SVP].

Nevertheless, it would be ideal and has been a long standing open question to obtain an
algorithm that achieves the “best of both worlds”, i.e. an algorithm that runs in time 2Opnq as
in sieving and requires memory polynomial in n as in enumeration. In the absence of such an

37

38 Chapter 3. Discrete Gaussian Sampling and the Shortest Vector Problem

algorithm, it is desirable to have a smooth trade-off between time and memory requirement
that interpolates between the current best sieving algorithms and the current best enumeration
algorithms.

To this end, Bai, Laarhoven, and Stehlé [BLS16] proposed the tuple sieving algorithm,
providing such a trade-off based on heuristic assumptions mentionned above. This algorithm
was later proven to have time and space complexity kn`opnq and kn{k`opnq, under the same
heuristic assumptions [HK17]. One can vary the parameter k to obtain a smooth time/space
trade-off. However, as noted in [HK17, p. 22], their analysis only applies to “fixed k”. In
particular, they cannot obtain the regime of subexponential space and superexponential time.
Furthermore, it is desirable to obtain a provable variant of this algorithm that does not rely
on any heuristics.

Kirchner and Fouque [KF16] attempted to do this. They claim an algorithm for solving
SVP in time qΘpnq and in space qΘpn{qq for any positive integer q ą 1. Unfortunately, their
analysis falls short of supporting their claimed result, and the correctness of the algorithm is
not clear. We refer the reader to Section 3.5 for more details.

In the rest of this chapter, we describe a provable time/space trade-off for discrete Gaussian
sampling. Using this trade-off, we obtain a provable time/space trade-off for SVP. A detailed
description of our contributions is available in Section 1.1.1.

3.2 Gaussian Sampling and the SVP
In order to understand discrete Gaussian sampling, and how it applies to the SVP, it useful to
visualise what such a distribution looks like (see Figure 3.1). Its shape is strongly affected
by the parameter s (the width). Similarly to the continuous Gaussian distribution, a smaller
parameter will produce a “tigher” distribution around the origin. Unlike the continuous
Gaussian, and under a certain threshold (called the smoothing parameter ηε, see Section 2.4),
the distribution will start to loose certain properties and become “less smooth”. The parameter
s represents a trade-off in different ways: in its shape, in the applications of the distribution
and in how easy it is to sample (see Figure 3.2). The problem of sampling the discrete Gaussian
distribution (known as DGS) therefore has many applications beyond the shortest vector
problem.

L “ Z, s “ 7 L “ Z2, s “ 7 L “ Zˆ 4Z, s “ 7

Figure 3.1: Examples of discrete Gaussian distribution in one and two dimensions with different
parameters.

We now informally review how a DGS-based algorithm for SVP works. The first step of
any such algorithm is to generate vectors according to a discrete Gaussian of very large width.

3.2. Gaussian Sampling and the SVP 39

s

largesmall ηεpLq

• very smooth

• easy to sample

• very discrete

• hard to sample

• SVP

smoothing
parameter

Figure 3.2: Trade-off of the discrete Gaussian depending on its parameter s.

When the width is sufficiently large (typically exponentially bigger than what is necessary to
solve SVP), the discrete Gaussian is so smooth that one can essentially generate according to
continuous Gaussian distribution and round to produce to a lattice vector. The width of the
Gaussian obtained this way depends on the quality of the basis. One can obtain a suitably
reduced basis in polynomial time by the LLL algorithm [Kle00, GPV08, BLP`13, ADRS15].
See Theorem 2.29 for more details. When solving the SVP, one will typically generate an
exponential number of vectors according to this distribution. The second step is to repeatedly
“sieve” this list to reduce the parameter s, usually down to the smoothing parameter. Indeed,
for reasons explained below, it is much easier to sieve when s is above the smoothing parameter.
The third step depends on the algorithm: one can either continue to sieve below the smoothing
parameter, which requires great care [ADRS15], or use this sampler to construct an oracle
for the BDD problem [DRS14, ADRS15]: Given an algorithm for DGS a constant factor c
above the smoothing parameter, we can solve the problem of BDD where the target vector is
within distance αλ1pLq of the lattice, where the constant α ă 0.5 depends on the constant
c. Additionally, using [CCL18], one can enumerate all lattice points within distance qδ to a
target t by querying qn times a BDD oracle with decoding distance δ (or qn{2 times if we are
given a quantum BDD oracle). Thus, by choosing q “ rλ1pLq{δs and t “ 0, an algorithm for
BDD immediately gives us an algorithm for SVP.

We now review the second step above in more details: sieving vectors to reduce the
parameter s above the smoothing parameter. Without any loss of generality, we can always
assume that L is a full-rank lattice. The key argument of any such algorithm is that combining
discrete Gaussian distributions still produces a discrete Gaussian, when above the smoothing
parameter. Here, the concept of coset usually plays an important role. Recall that if L Ă Rn
is a lattice, we can consider the quotient L{2L “ tx ` 2L : x P Lu. This quotient is finite
of size exactly 2n and each coset x ` 2L essentially encodes the parities of the coordinates
of the vectors modulo 2L. In other words, if b1, . . . ,bn is a basis of L, then a lattice vector
řn
i“1 xibi belongs to a coset that only depends on the parities x1 pmod 2q, . . . , xn pmod 2q.

One idea to reduce the length of vectors is to take the average of two vectors. However the
average is usually not a lattice vector but more can be said if we consider cosets. Indeed let
c` L be a coset of L{2L,

if x,y P c` 2L then x` y
2 P L.

Furthermore, as the lemma below shows, this operation preserves the Gaussian distribution
while reducing the parameter s to s{

?
2.

40 Chapter 3. Discrete Gaussian Sampling and the Shortest Vector Problem

Lemma 3.1 ([ADRS15]). Let L be a lattice and X1, X2 be two independent variables sampled
from DL,s with s ą 0, then for any y P L,

Pr
pX1,X2q„D2

L,s

rpX1 `X2q{2 “ y|X1 `X2 P 2Ls “ Pr
Z„DL,s{

?
2
rZ “ ys.

This result suggests the following sieving algorithm, proposed by Aggarwal et al [ADRS15].
While superficially trivial, we point out that the complete analysis of this algorithm is quite
sophisticated.

Algorithm 3.1 PairAndAverage(L)
Input: L is a list of vectors in L
1: L1 Ð empty list
2: for each unpaired vector x in L do
3: if there exists another unpaired vector y with x` y P 2L then
4: add px` yq{2 to L1
5: end if
6: end for
7: return L1

Analysis of the algorithm. Unfortunately, the algorithm above produces the wrong
distribution despite the lemma. The problem comes from the fact that in the lemma above, X1
and X2 are two independent variables, hence the probability of X1 and X2 to be in the same
coset c` 2L (a necessary and sufficient condition for X1 `X2 to be in 2L) is proportional to
ρspc` 2Lq2, where ρs is the Gaussian mass function (see Section 2.4). On the other hand, the
algorithm above has a different behaviour: the number of pairs of vectors in the coset c` 2L
will be proportional to the number of times this coset appears in the list, that is ρspc` 2Lq
instead of ρspc` 2Lq2. This mismatch between the “squared distribution” that we want and
the “unsquared” distribution that we get is the main technical challenge in [ADRS15]. It is
overcome by the use of a “square sampler” that only works above the smoothing parameter.
In a later article, the authors introduced the notion of “mixture of Gaussians” and showed
that this algorithm, while not producing a discrete Gaussian, still produces a distribution that
can be used to solve the SVP in time 2n [AS18b].

An interesting observation for us is that, at the cost of introducing a small error on
the distribution, the algorithm above actually works whenever the parameter s is above the
smoothing parameter. This is where the smoothness of the distribution comes in: a well-known
consequence (Lemma 2.22) of s being above the smoothing parameter is that all cosets c` 2L
have the same weight (up to a small factor ε). It follows that the “squared distribution”
problem disappears because all cosets have the same weight (up to ε) and so does the “square
distribution”.

Reducing the memory usage. Another drawback of Algorithm 3.1 (and its variants) is
that the memory usage is clearly exponential in the dimension: we need to remember one
vector per coset to efficiently pair them and there are 2n cosets. Furthermore, to even have a
chance at pairing two vectors, we need a list of size at least 2n, otherwise all vectors could be

3.2. Gaussian Sampling and the SVP 41

a different cosets. This problem can be mitigated somewhat by the use of towers of lattice
[ADRS15] but it only brings the memory usage down to 2n{2 with no obvious way to improve
it further. There is of course, an obvious but extremely inefficient way to reducing the memory
usage: simply select two elements of the list at random and pair them if they are in the same
coset, otherwise try again (see Algorithm 3.2). The complexity of this algorithm is terrible:

Algorithm 3.2 ExtremelyNaivePairAndAverage(L)
Input: L is a list of vectors in L
1: L1 Ð empty list
2: while L contains at least 2n ` 1 elements do
3: x Ð a random element from L
4: y Ð a random element from L
5: if x` y P 2L then
6: add px` yq{2 to L1
7: remove x and y from L
8: end if
9: end while

10: return L1

since all cosets have the same weight above the smoothing parameter, we expect that it will
take 2n trials to get two vectors x and y which sum is in L. Hence the algorithm will take an
expected time 2n|L| compared to |L| in the previous algorithm. On the other hand, it does
not use any memory besides the one used to store the list, but the list still needs to be of
size at least 2n which is exponential. Therefore a natural question is whether we can have a
smooth trade-off between Algorithm 3.1 and Algorithm 3.2.

Improving memory usage. One way to improve the space complexity, and that we pursue
in this work, is to sum more than two vectors. Assume now that |L| ą 2n{2 (compared to
2n previously) and pick a random element x in L. Now consider the |L|2 possible sums of
two vectors (excluding x): they will fall into the 2n cosets. But since |L|2 ą 2n, and since
the sum of two discrete Gaussians of parameter s above the smoothing parameter is very
close to a discrete Gaussian of parameter

?
2s (Theorem 2.28), we can expect one sum per

coset. Therefore one of those sums y ` z falls in the same coset as that of x and the sum
x ` y ` z P 2L can now be divided by two to obtain a vector of L. Theorem 2.28 again
guarantees that this sum is statistically close to being a Gaussian of parameter

?
3s on 2L,

hence px` y` zq{2 P L will be close to a discrete Gaussian of parameter
?

3s{2 on L. Note
that we have managed to reduce the space requirement on the list from 2n down to 2n{2. Also
note that while it works for three vectors, it does not work with four. Indeed, the sum of four
Gaussians of parameter s will be close to a Gaussian of parameter 2s, therefore dividing by
two will again yield a Guassian of parameter s: we are not reducing the size of the vectors
anymore.

A smooth time/memory trade-off. Going further requires one more idea: we can go
beyond 2L and look for vectors in qL for some parameter q ě 2. If we sum d ` 1 vectors
then the sum will be close to a Gaussian of parameter

?
d` 1s{q after dividing by q, again by

42 Chapter 3. Discrete Gaussian Sampling and the Shortest Vector Problem

Theorem 2.28. If we proceed as before, picking a first element at random and then looking for
d vectors which sum is in the same coset, then there are roughly

`

|L|
d

˘

« |L|d possible sums.
Therefore, we only need |L| Á qn{d samples to find a collision on average (since there are qn
cosets in L{qL) and we can pick any d P r1, q2 ´ 2s to ensure that we reduce the parameter of
the Gaussian. If we always choose a list of size |L| « qn{d then the time complexity will be
roughly |L|d « qn while the space complexity is dominated by the size of the list, hence qn{d.
Setting q “ 3 and d “ 1, we obtain a 3n time and space algorithm. Setting d “ q2 ´ 2 for any
q, we obtain a qn time algorithm in space qn{q2 . In particular, for q “

?
n, we obtain a nn

algorithm in space polypnq.

In the following, we will explore this approach in details and see that there are significant
technical challenges to overcome to make it work. In particular, the fact that we remove
samples from the list after each match perturbs the uniformity of the list and of the cosets.
Even though the error is small (exponentially so), this becomes a problem when we repeat
this operation an exponential number of times. As a result, the trade-off that we obtain is not
quite as good as the simplistic analysis above suggests.

3.3 Algorithm for Discrete Gaussian Sampling
We now present the main result of this chapter. For convenience, when we discuss the running
time of the algorithms in this chapter, we ignore polynomial factors in the bit-length of the
individual input basis vectors (i.e. we consider only the dependence on the ambient dimension
n).

Theorem 3.2. Let n P N, q ě 2, d P r1, ns be positive integers, and let ε ą 0. Let C be any
positive integer. Let L be a lattice of rank n, and let s ě 2

?
dqηεpLq. There is an algorithm

that, given N “ 160d2 ¨C ¨ qn{d independent samples from DL,s, outputs a list of vectors that is
p4ε2dN ` 11Cq´5n{2q-close to Cqn{d independent vectors from DL,

?
8d`1
q

s
. The algorithm runs

in time C ¨ p10e ¨ dq8d ¨ q8n`n{d`opnq and requires memory polypdq ¨ qn{d.

Proof. We prove the result for C “ 1, and the general result follows by repeating the algorithm.
Let tx1, . . . ,xNu be the N input vectors and let tc1, . . . , cNu be the corresponding cosets in
L{qL. We will analyze Algorithm 3.3; note that it produces samples in a streaming fashion.
The time complexity of the algorithm is

N

2 ¨
ˆ

N{2
8d

˙

ď
N

2

ˆ

eN

16d

˙8d
ď p10e ¨ dq8d ¨ q8n`n{d`opnq ,

and memory requirement of the algorithm is immediate. We now show correctness: we will
make repeated use of the data processing inequality (see Section 2.3) and accumulate the error
terms until the end of the proof.

Let ε1 “ ε2d so that s ě
?

2ηε1pqLq by Lemma 2.24. First, we can assume that the vectors xi
for i P rN s are obtained by first sampling ci P L{qL such that Prrci “ cs “ PrrDL,s P qL` cs
and then sampling the vector xi according to DqL`ci,s. Indeed, let X „ DL,s and C be a

3.3. Algorithm for Discrete Gaussian Sampling 43

Algorithm 3.3 TradeOffSieve(L)
Input: L “ tx1, . . . ,xNu is a list of N vectors in L
1: L1 Ð tx1, . . . ,xN

2
u

2: L2 Ð txN
2 `1, . . . ,xNu

3: QÐ 0
4: while Q ă qn{d and L1 is not empty do
5: v Ð be the first vector in L1.
6: Find 8d vectors (by trying all 8d-tuples) xi1 , . . . ,xi8d from L2 s.t. ci1`¨ ¨ ¨`ci8d´v P qL.
7: if such vectors exist then
8: Output the vector xi1`¨¨¨`xi8d´v

q P L
9: QÐ Q` 1.

10: Remove vectors xi1 , ¨ ¨ ¨ ,xi8d from L2
11: end if
12: Remove vector v from L1
13: end while

random coset in L{qL sampled such that PrrC “ qL` cs “ ρspqL`cq
ρspLq , then for any x P L,

PrrX “ xs “
ρspxq

ρspLq
“
ρspqL` cq

ρspLq
ρspxq

ρspqL` cq
“ PrrC “ cs Pr

Y„DqL`c,s

rY “ xs

where c “ qL` x. Moreover, by Corollary 2.23, this distribution is 2ε1N -close to sampling
ci for i P rN s, independently and uniformly from L{qL, and then sampling the vectors xi
according to DqL`ci,s. We now assume that the input is sampled from this distribution.

Second, we can assume that the algorithm initially gets only the corresponding cosets as
input, and the vectors xij P qL` cij for j P r8ds, and v P qL` c are sampled from DqL`cij ,s

and DqL`c,s only before such a tuple is needed in Step 4 of the algorithm. Indeed, notice that
the test at line 6 does not actually depend on the particular value of the xij and v but only on
their cosets. Since any input vector is used only once in Step 4, these samples are independent
of all prior steps. This implies, by Theorem 2.28, that the vector obtained in Step 4 of the
algorithm is 2ε1-close to being distributed as DL,s

?
8d`1
q

.

It remains to show that our algorithm finds qn{d vectors (with high probability). Let
N 1 “ N

2 be an integer, X be a random variable uniform over pL{qLqN 1 , and let Y be a random
variable independent of X and uniform over vectors in t0, 1uN 1 with Hamming weight 8d. The
number of such vectors is

ˆ

N 1

8d

˙

ě

ˆ

N 1

8d

˙8d
ě q8n . (3.1)

Let U be a uniformly random coset of L{qL. By Lemma 2.13 and (3.1), we have

dSDppxX,Y y, Xq, pU,Xqq ď
1
2 ¨

c

qn

q8n “
1
2q
´7n{2 .

By Markov inequality we have

Pr
xÐX

„

dSDpxx, Y y, Uq ě
q´n

10

ď
10
q´n

ExÐXrdSDpxx, Y y, Uqs

44 Chapter 3. Discrete Gaussian Sampling and the Shortest Vector Problem

“
20
q´n

dSDppxX,Y y, Xq, pU,Xqq

ď
20
q´n

¨
1
2q
´7n{2 “ 10q´5n{2.

Hence, with probability at least 1 ´ 10q´5n{2 over the choice of x Ð X, we have that
dSDpxx, Y y, Uq ď

q´n

10 and thus for any v P L{qL,

q´n `
q´n

10 ą Prrxx, Y y “ v mod qLs ą q´n ´
q´n

10 . (3.2)

It follows that, by introducing a statistical distance of at most 10q´5n{2 on the input, we can
assume that the input vectors in list L2 satisfy (3.2). Notice that after the algorithm found
i vectors for any i ă qn{d, it has removed 8id vectors from L2. We will show that for each
vector from L1 (which is uniformly sampled from L{qL) with constant probability we will find
8d-vectors in Step 3.

After i ă qn{d output vectors have been found, there are M “ N 1 ´ 8id vectors remaining
in the list L2. There are

`

M
8d
˘

different 8d-combinations possible with vectors remaining in L2.
ˆ

N 1

8d

˙

{

ˆ

M

8d

˙

“
N 1 ¨ ¨ ¨ pN 1 ´ 8d` 1q
M ¨ ¨ ¨ pM ´ 8d` 1q

ă

ˆ

N 1 ´ 8d
N 1 ´ 8dpi` 1q

˙8d

ă

˜

1` 8dqn{d

N 1 ´ 8dqn{d ´ 8d

¸8d

“

˜

1` 1
10d´ 1´ 1

qn{d

¸8d

since N 1 “ 80d2qn{d for C “ 1

ď

ˆ

1` 1
10d´ 3{2

˙8d
ă

5
2 . (3.3)

At the beginning of the algorithm, there are
`

N 1

8d
˘

combinations, and hence by (3.2), each of the
qn cosets appears at least 0.9q´n

`

N 1

8d
˘

times. After i ă qn{d output vectors have been found,
there are only

`

M
8d
˘

combinations left, and
`

N 1

8d
˘

´
`

M
8d
˘

possible combinations have been removed.
We say that a coset c disappears if there is no set of 8d vectors in L2 that add to c. In order
for a coset to disappear, all of the at least 0.9q´n

`

N 1

8d
˘

combinations from the initial list must

be removed. Hence, the number of cosets that disappear is at most p
N 1

8dq´p
M
8dq

0.9q´npN
1

8dq
ă

3{5
0.9 q

n “ 2
3q
n

distinct cosets by (3.3). Hence with probability at least 1{3, we find 8d vectors xi1 , . . . ,xi8d
from L2 such that xi1 ` ¨ ¨ ¨ ` xi8d ´ v P qL. By Chernoff-Hoeffding bound with probability
greater than 1 ´ e´d

2qn{d , the algorithm finds at least qn{d vectors. In total, the statistical
distance from the desired distribution is

2ε1N ` 2ε1qn{d ` 10 ¨ q´5n{2 ` e´d
2qn{d ď 4ε1N ` 11 ¨ q´5n{2.

3.3. Algorithm for Discrete Gaussian Sampling 45

Corollary 3.3. Let n P N, q P r4,
?
ns be an integer, and let ε “ q´32n{q2. Let L be a lattice

of rank n, and let s ě ηεpLq. There is an algorithm that outputs a list of vectors that is
q´Ωpnq-close to q16n{q2 independent vectors from DL,s. The algorithm runs in time q13n`opnq

and requires memory polypnq ¨ q16n{q2.

Proof. Choose d so that 16d ´ 16 ă q2 ď 16d, which is possible when q ě 4, and let
α “ q{

?
8d` 1 — this is the ratio by which we decrease the Gaussian width in Theorem 3.2 —

and note that α ě 1.2.
Let p “ r2

?
dqs ă q2 and k be the smallest integer such that αk ¨ p ě 2n log logn{ logn. Thus

k “ Opn log logn{ lognq. Let g “ αkps ě 2n log logn{ logn ¨ ηεpLq. By Theorem 2.29, in time
N0 ¨ polypnq, we get N0 “ p160d2qkqn{d samples from DL,g.

We now iterate k times the algorithm from Theorem 3.2. Initially we have N0 vectors. At
the beginning of the i-th iteration for i ď k ´ 1, we have Ni :“ N0 ¨ p160d2q´i vectors that are
∆i-close to being independently distributed from DL,α´ig, where α´ig ě αp ¨ ηεpLq. Hence,
we can apply Theorem 3.2 and get Ni`1 “ Ni{160d2 vectors that are ∆i`1-close to being
independently distributed from DL,α´pi`1qg, where ∆i`1 ď ∆i ` 4ε2dNi ` 11p160d2qk´iq´5n{2.
At each iteration we had Ni ě 160d2qn{d vectors, a necessary condition to apply Theorem 3.2.
Therefore after k iterations, we have at least Nk “ N0{p160d2qk “ qn{d samples that are
∆k-close to being independently distributed from DL,α´kg, where

∆k ď 11q´5n{2
k
ÿ

i“1
p160d2qk´i `

k´1
ÿ

i“0
4ε2dNi

ď 11p160d2qkq´5n{2 ` 4q´4nqn{d
k´1
ÿ

i“0
p160d2qk´i since 16d ě q2

ď

´

11q´5n{2 ` 4q´4n`n{d
¯

p160d2qk`1 “ q´5n{2`opnq since p160d2qk`1 “ qopnq.

Any vector distributed as DL,ps is in pL with probability at least p´n. We repeat the algorithm
2pn “ Opq2nq times to obtain pn ¨ 2 ¨ qn{d vectors that are 2pnq´5n{2`opnq “ q´n{2`opnq close to
2pn ¨ qn{d independent samples from DL,ps. Of these samples obtained, we only keep vectors
that fall in pL and divide them by p. LetM “ pn ¨2 ¨qn{d. By Chernoff-Hoeffding (Lemma 2.14)
with P “ p´n, and δ “ 1

2 , the probability to obtain less than p1 ´ δqPM “ qn{d samples is

at most
´

e´δ

p1´δq1´δ

¯PM
ď e´

1
10 q

n{d

. Furthermore, d ď q2`16
16 and q ÞÑ ln q

16`q2 is decreasing for
q ě 4, hence for q ď

?
n,

qn{d ě e
16n ln q

16`q2 ě e16n ln
?
n

16`n ě e16 ln
?
n´op1q “ Ωpn8q.

Hence with probability greater than 1´ e´
1
10 q

n{d

“ 1´ q´Ωpn8q, we get qn{d vectors from the
distributionDL,s. The statistical distance from the desired distribution is q´Ωpn8q`q´n{2`opnq ď

q´n{2`opnq. We repeat this for q16n{q2

qn{d
times, to get q16n{q2 vectors. The total statistical distance

from the desired distribution is q16n{q2

qn{d
¨q´n{2`opnq ď q´Ωpnq. The total running time is bounded

by

q2n

˜

q16n{q2

qn{d

¸˜

polypnq ¨N0 `
k´1
ÿ

i“0
p10edq8d ¨ p160d2qk´iq8n`n{d`opnq

¸

ď q13n`opnq.

46 Chapter 3. Discrete Gaussian Sampling and the Shortest Vector Problem

The memory usage is slightly more involved: we can think of the k iterations as a pipeline
with k intermediate lists and we observe that as soon as a list (at any level) has more
than 160d2q16n{q2 elements, we can apply Theorem 3.2 to produce q16n{q2 vectors at the
next level. Hence, we can ensure that at any time, each level contains at most 160d2q16n{q2

vectors, so in total we only need to store at most k ¨ 160d2q16n{q2
“ polypnqq16n{q2 vectors,

to which we add the memory usage of the algorithm of Theorem 3.2 which is bounded by
polypnq ¨ qn{d ď polypnq ¨ q16n{q2 . Finally, we run the filter (pL) on the fly at the end of the k
iterations to avoid storing useless samples.

This tradeoff works for any q ě 4, and the running time can be bounded by qcn ` opnq for
some constants c that we have not tried to optimize.

3.4 Algorithms for BDD and SVP
In the previous section, we obtained a trade-off for Discrete Gaussian Sampling. By using
existing reductions from BDD and SVP to DGS, we will show how to obtain a trade-off for
those problems.

Theorem 3.4. Let n P N, q P r4,
?
ns be a positive integer. Let L be a lattice of rank n, there

exists an algorithm that creates a 0.1{q-BDD oracle in time q13n`opnq and space polypnq¨q16n{q2 .
Every call to this oracle takes time polypnqq16n{q2.

Proof. Let ε “ q
´32n
q2 and s ě ηεpL˚q. From Corollary 3.3, there exists an algorithm that

outputs q16n{q2 vectors whose distribution is statistically close to DL˚,s in time q13n`opnq and
space polypnq ¨ q16n{q2 . By repeating this algorithm polypnq times, we can therefore build a
DGSpolypnqq16n{q2

ηε oracle such that each call takes time q13n`opnq and space polypnq ¨ q16n{q2 .
By Theorem 2.40 and Remark 2.41 we can construct a α´BDD such that each call

takes time m ¨ polypnq and space polypnq, where α “ φpLq{λ1pLq “
?

lnp1{εq{π´op1q
2ηεpL˚qλ1pLq and

m “ Opn logp1{εq
?
ε

q “ Opn
2

q2 q
16n{q2 log qq ď polypnqq16n{q2 . The preprocessing consists of polypnq

calls to the DGSmηε sampler described above and requires space m ¨ polypnq. Hence the total
complexity is polypnqq13n`opnq “ q13n`opnq in time and m ¨ polypnq “ polypnqq16n{q2 in space.
By using inequality (2.3), in Lemma 2.25, we have that

λ1pLqηεpL˚q ă
c

βpLq2n
2πe ¨ ε´1{np1` op1qq.

Hence we can guarantee that

αpLq ě

d

lnp1{εq
2npβ2{eqε´2{n ¨ p1´ op1qq ě

1
q

d

32 ¨ e ¨ ln q
2β2q64{q2 ¨ p1´ op1qq ě p10qq´1.

Theorem 3.5. Let n P N, q P r4,
?
ns be a positive integer. Let L be a lattice of rank n. There

is a randomized algorithm that solves SVP in time q13n`opnq and in space polypnq ¨ q
16n
q2 .

3.5. Comparison with previous time/space trade-offs 47

Proof. By Theorem 3.4, we can construct a 0.1
q -BDD oracle in time q13n`opnq and in space

polypnq ¨ q
16n
q2 . Each execution of the BBD oracle now takes polypnqq16n{q2 time. By Theorem

2.35, with p10qqn queries to 0.1
q -BDD oracle, we can find the shortest vector. The total time

complexity is q13n`opnq ` polypnqq16n{q2
¨ p10qqn “ q13n`opnq.

Remark 3.6. If we take q “
?
n, Theorem 3.5 gives a SVP algorithm that takes nOpnq time

and polypnq space. When q is a large enough constant, for any constant ε ą 0, there exists a
constant C “ Cpεq ą 2, such that there is a 2Cn time and 2εn space algorithm for DGS, and
SVP. In particular, the time complexity of the algorithm in this regime is worse than the best
known sieving algorithms.

3.5 Comparison with previous time/space trade-offs
We now compare our trade-off for SVP with other trade-offs in the litterature.

Kirchner and Fouque [KF16] begin their algorithm by sampling an exponential number of
vectors from the discrete Gaussian distribution DL,s and then using a pigeon-hole principle,
show that there are two distinct sums of d vectors (for an appropriate d) that are equal mod
qL, for some large enough integer q. This results in a t´1, 0, 1u combination of input lattice
vectors (of Hamming weight at most 2d) in qL; a similar idea was used in [BLS16] to construct
their tuple sieving algorithm. In both algorithms, it is difficult to control (i) the distribution
of the resulting vectors, (ii) the dependence between resulting vectors.

Bai et al [BLS16] get around the above issues by making a heuristic assumption that the
resulting vectors behave like independent samples from a “nice enough” distribution. [HK17]
proved that this heuristic indeed leads to the time-memory tradeoff conjectured in [BLS16],
but don’t prove correctness. As noted in [HK17, p. 22], their analysis only applies to “fixed
k” which in our context means q “ Op1q. In particular, they cannot obtain the regime of
subexponential space and superexponential time.

Kirchner and Fouque, on the other hand, use the pigeon-hole principle to argue that there
exist coefficients α1, . . . , α2d P t´1, 0, 1u and 2d lattice vectors in the set of input vectors
v1, . . . ,v2d such that

ř2d
i“1 αivi
q P L. It is then stated that

ř2d
i“1 αivi
q has a nice enough Discrete

Gaussian distribution. We observe that while the resulting distribution obtained will indeed
be close to a discrete Gaussian distribution, we have no control over the parameter s of this
distribution and it can be anywhere between 1{q and

?
2d{q depending on the number of

nonzero coordinates in pα1, . . . , αqq. For instance, let v1, ¨ ¨ ¨ ,v5 be input vectors which are all
from DL,s for some large s and we want to find the collision in qL for some positive integer q.
Suppose that we find a combination w1 “ v1 ` v2 ´ pv1 ` v3q P qL and another combination
w2 “ v2`v3´pv4`v5q P qL, then by Theorem 2.28, one would expect that w1{q „ DL,

?
2s{q

and w2{q „ DL,
?

4s{q. This means that the output of the exhaustive search algorithm by
Kirchner and Fouque will behave like samples taken from discrete Gaussian distributions with
different parameters, making it difficult to keep track of the standard deviation after several
steps of the algorithm, and to obtain samples from the Discrete Gaussian distribution at the
desired parameter above the smoothing parameter. We overcome this issue by showing that
there is a combination of the input vectors with a fixed Hamming weight that is in qL.

48 Chapter 3. Discrete Gaussian Sampling and the Shortest Vector Problem

There are other technical details that were overlooked in [KF16]. In particular, one needs
be careful with respect to the errors, both in the probability of failure and the statistical
distance of the input/output. Indeed the algorithm performs an exponential number of steps,
it is not enough to show that the algorithm succeeds with “overwhelming probability” and that
the output has a “negligible statistical distance” from the desired output. However, none of
the claimed error bounds in [KF16] are proven and almost the entire proof of the Exhaustive
Search (Theorem 3.4) is left to the reader.

Chapter4New Space Efficient Provable
Quantum and Classical Algorithms for

the SVP
For convenience, in this chapter, we will ignore polynomial factors in the bit-length of the
individual input basis vectors of a lattice and only consider the dependence on the ambient
dimension n. Since all our algorithm have running time at least 2Ωpnq, this is the same as
assuming that the bit-length of the basis vectors is 2opnq. Since the basis vectors are usually
taken to be of size polynomial in the dimension, this assumption induces no real loss of
generality.

The work in this chapter has been published at STACS 2021 [ACKS21] and is a joint work
with Divesh Aggarwal, Yanlin Chen and Rajendra Kumar. It also appears in part in Rajendra
Kumar’s PhD thesis [Kum21]. This chapter contains several improvements over the published
version and has been significantly rewritten.

4.1 Introduction
In a recent work, Chen et al [CCL18] proposed an algorithm for SVP based on Discrete
Gaussian sampling (DGS) in [ADRS15]. Recall that DGS consists in producing samples
according to the discrete Gaussian distribution (see Definition 2.16 and Section 2.4). Their
algorithm runs in time 22.05n`opnq and the memory requirement is 20.5n`opnq. The quantum
variant of their algorithm runs in time 21.2553n`opnq, has the same classical space complexity and
uses only polypnq numbers of qubits. Both their classical and quantum algorithms previously
had the best space complexity among known provable algorithms that run in time 2Opnq. In this
chapter, we improve upon their results and provide faster classical and quantum algorithms for
SVP. Let us first recall the randomized reduction from SVP to BDD shown in [CCL18]. Recall
that an α-BDD oracle takes as input a lattice L, a target vector t with distpt,Lq ď αλ1pLq
and outputs a vector y P L such that }y´ t} “ distpt,Lq (see Definition 2.21).

Theorem ([CCL18, Theorem 8]). Given a basis matrix B Ă Rnˆn for lattice LpBq Ă Rn, a
target vector t P Rn, an α-BDD oracle BDDα with α ă 0.5, and an integer scalar p ą 0. Let
fαp : Znp Ñ Rn be

fαp psq “ ´p ¨ BDDαpL, pB s´ tq{pq `B s.

If distpt,Lq ď αλ1pLq, then the list m “ tfαp psq | s P Znpu contains all lattice points at distance
less than or equal to pαλ1pLq to t.

The BDD oracle built in [DRS14] by discrete Gaussian samples has decoding distance
αλ1pLq for α ă 1{2 (there is a trade-off between α and the number of DGS samples needed),

49

50 Chapter 4. New Space Efficient Provable Algorithms for the SVP

and therefore, if we choose t to be 0, then p has to be at least 3 to ensure that the shortest
vector is one of the vectors output by the list m.

In order to solve SVP with p “ 3, it is sufficient to use a BDD oracle with decoding
coefficient α equal to 1{3. In [CCL18], the authors use the reduction from BDD to DGS by
[DRS14] and use the Gaussian sampler of [ADRS15] to obtain many samples with standard
deviation equal to

?
2η1{2. This allows them to construct a 0.391-BDD but each query to the

BDD oracle uses many DGS samples. This is wasteful since we really only need a 1{3-BDD. The
reason why it is so expensive is that in the analysis they need to find ε such that ηε ą

?
2η1{2

to apply the reduction, and it requires them to take ε much smaller than would be strictly
necessary to construct a 1{3-BDD oracle; this smaller ε explains the bigger decoding radius.

We will improve the time complexity of the algorithm in two ways. First we show how to
improve the BDD oracle so that each query becomes cheaper. We do so by building a DGS
sampler directly at the smoothing parameter to avoid the

?
2 factor that makes the decoding

radius unnecessarily large (and hence the BDD too expensive). Second, we show how to reduce
the number of queries to the BDD oracle. Recall that in [CCL18], one needs to query pn “ 3n
times the 0.391-BDD to construct the list m in the classical setting and pn{2 “ 3n{2 times in
the quantum setting by the quantum minimum finding algorithm in Theorem 2.6. By making
smarter queries, we show how to take p “ 2 above (and therefore greatly reduce the number
of queries). A detailed description of our contributions is available in Section 1.1.2.

For convenience, in this chapter, we will ignore polynomial factors in the bit-length of the
individual input basis vectors (i.e. we consider only the dependence on the ambient dimension
n) when discussing the complexity of algorithms for DGS, BDD or SVP.

4.2 Improved algorithms for BDD
We obtain a BDD oracle with decoding distance α by using the same reduction as above
but making each call cheaper. This is achieved by building a sampler that directly samples
at the smoothing parameter, hence avoiding the

?
2 factor, allowing us to take a bigger ε.

In [ADRS15], it was shown how to construct a dense lattice L1 whose smoothing parameter
ηpL1q is

?
2 times smaller than the original lattice, and that contains all lattice points of the

original lattice. Suppose that we first use such a dense lattice to construct a corresponding
discrete Gaussian sampler with standard deviation equal to s “

?
2ηpL1q. We then do the

rejection sampling on condition that the output is in the original lattice L. We thus have
constructed a discrete Gaussian sampler of L whose standard deviation is

?
2ηpL1q “ ηpLq.

Nevertheless, |L1{L| will be at least 20.5n, which implies that this procedure needs at least
20.5n input vectors to produce an output vector.

The complexity of our BDD algorithms heavily depends on the quantity βpLq which is
related to the kissing number of the lattice (see Section 2.4). For this reason, we first provide
complexity bounds that depend on βpLq and then obtain complexity bounds in the worst case
(βpLq ď 20.401`op1q) as corollaries. We first show how to efficient sample a discrete Gaussian
at the smoothing parameter.

Lemma 4.1. There is a probabilistic algorithm that, given a lattice L Ă Rn, m P Z` and
s ě η1{3pLq as input, outputs m samples from a distribution pm ¨ 2´Ωpn2qq-close to DL,s in

4.2. Improved algorithms for BDD 51

expected time m ¨ 2n{2`opnq and space pm` 2n{2q ¨ 2opnq. Furthermore, all samples have polypnq
bit-size.

Proof. Let a “ n
2 ` 4. We repeat the following until we output m vectors. We use the

algorithm in Lemma 2.32 to obtain a lattice L1 Ą L of index 2a. We then run the algorithm
from Theorem 2.31 with input pL1, sq to obtain a list of vectors from L1. We output the vectors
in this list that belong to L. The correctness of the algorithm, assuming it outputs anything,
is clear as long as the samples obtained from Theorem 2.31 are (sufficiently) independent,
which we will prove below.

By Theorem 2.31, we obtain, in time and space 2pn{2q`opnq, M ď 2n{2 vectors that are
2´Ωpn2q-close to M vectors independently sampled from DL1,s. The theorem guarantees that
M “ 2n{2 if s ě

?
2η1{2pL1q. Also, by Lemma 2.32, with probability at least 1{2, we have

s ě η1{3pLq ě
?

2η1{2pL1q. Note that when s ă
?

2η1{2pL1q, the samples obtained from
Theorem 2.31 are still 2´Ωpn2q-close to M vectors independently sampled from DL1,s but M
could be much lower than 2n{2 or even 0. On the other hand, if s ě

?
2η1{2pL1q then M “ 2n{2.

Assume that s ě
?

2η1{2pL1q, which happens with probability at least 1{2. From these
M “ 2n{2 vectors, we will reject the vectors which are not in lattice L. It is easy to see
that the probability that a vector sampled from the distribution DL1,s is in L is at least
ρspLq{ρspL1q ě 1

2a using Lemma 2.22. Thus, the probability that we obtain at least one vector
from L (which is distributed as DL,s) is at least

1
2

´

1´ p1´ 1{2aq2n{2
¯

“
1
2

´

1´ p1´ 1{2n{2`4q2
n{2

¯

ě
1
2 ¨

´

1´ e´2n{2{2n{2`4
¯

“
1
2p1´ e

´1{16q.

It implies that after rejection of vectors, with constant probability we will get at least one vector
from DL,s. Thus, the expected number of times we need to repeat the algorithm is Opmq until
we obtain vectors y1, . . . ,ym whose distribution is statistically close to being independently
distributed from DL,s. The time and space complexity is clear from the algorithm.

We can ensure that all samples have polypnq bit-size by first generating more samples (say
twice the amount) and throwing away all samples of norm larger than exppΩpn2qq. Since the
vectors are sampled from a Gaussian with width at most1 exppOpnqq, the error induced by
throwing away the tail of the distribution is smaller than 2´Ωpn2q.

4.2.1 BDD when ε is small
In order to go further, we will make heavy use of Theorem 2.40 and Lemma 2.25 to relate
the smoothing parameter to other parameters of the lattice. A small difficulty when applying
Lemma 2.25 is the case distinction on ε. We will start by using inequality (2.4) which will
require to take very small values of ε when sampling the discrete Gaussian.

Lemma 4.2. For any sufficiently large n, any lattice L Ă Rn and any A such that 1
2 ln 2 ´

b` op1q ď A ď 1, there exists a randomized algorithm that creates a α-BDD oracle in time
2pA`1qn{2`opnq and space 20.5n`opnq, where α “ 1

2

b

A
A`b and b “ log2 βpLq. Every call to this

oracle takes time 2An{2`opnq and space polypnq, excluding the space of the preprocessed data.
1Here we are using our assumption that the basis vectors have size at most 2opnq.

52 Chapter 4. New Space Efficient Provable Algorithms for the SVP

Proof. Let ε “ 2´An, A ď 1 to be fixed later. We know that ηεpL˚q ą η1{3pL˚q for any
sufficiently large n (n ą 1

A log2 3) by the monotonicity of the smoothing parameter function.
Hence the DGSmη1{3

sampler from Lemma 4.1 can be used as a DGSmηε sampler, for any m P N.
By Theorem 2.40 and Remark 2.41 we can construct a α´BDD such that each call takes

time m ¨ polypnq “ 2An{2`opnq and space polypnq, where α “ φpLq{λ1pLq “
?

lnp1{εq{π´op1q
2ηεpL˚qλ1pLq

and m “ Opn logp1{εq
?
ε

q “ 2An{2`opnq. The preprocessing consists of polypnq calls to the DGSmηε
sampler described above and requires space m ¨ polypnq. Hence the total complexity is
polypnq ¨m ¨ 2n{2`opnq “ 2pA`1qn{2`opnq in time and 2An{2`opnq ď 2n{2`opnq in space. By using
Lemma 2.25, inequality (2.4), only valid when ε ď pe{βpLq2 ` op1qq´

n
2 , we have that

λ1pLqηεpL˚q ă
c

lnp1{εq ` n ln βpLq ` opnq
π

.

Hence we can guarantee that

α “

a

lnp1{εq{π ´ op1q
2ηεpL˚qλ1

ą

a

lnp1{εq{π ´ op1q

2
b

lnp1{εq`n lnβpLq`opnq
π

“
1
2

d

lnp1{εq ` op1q
lnp1{εq ` n ln βpLq “

1
2

b

A
A`b ` op1q

where b “ log2 βpLq. Furthermore, as noted above, this inequality is only valid when ε ď
pe{β2 ` op1qq´

n
2 , that is A ě 1

2 ln 2 ´ b` op1q. Finally, note that since b ď 0.401, we must have
A ě 0.32 and the inequality holds as soon as n ě 5 ě 1

A log2 3. Finally note that Theorem 2.40
requires ε ď 1{200 which holds as soon as n ě 17 ě 1

A ln 200.

We can reformulate the previous lemma by expressing the complexity in terms of α instead
of some arbitrary constant A.

Corollary 4.3. For any n ě 5, any lattice L Ă Rn and any α such that 1
2
?

1´ 2b ln 2 `
op1q ď α ă 1

2

b

1
1`b , there exists a randomized algorithm that creates a α-BDD oracle in time

2pA`1qn{2`opnq and space 20.5n`opnq such that every call to this oracle takes time 2An{2`opnq, and
space polypnq, excluding the space of the preprocessed data, where A “ 4bα2

1´4α2 and b “ log2 βpLq.

Proof. Apply Lemma 4.2 for some A to be fixed later. Observe that α “ 1
2

b

A
A`b so A “

4bα2

1´4α2 .
Now the constraints 1

2 ln 2 ´ b` op1q ď A ď 1 become

1
2 ln 2 ´ b` op1q ď

4bα2

1´4α2 ô p 1
2 ln 2 ´ b` op1qqp1´ 4α2q ď 4bα2

ô 1
4 ln 2 ´

b
2 ` op1q ď

α2

ln 2

ô 1
2
?

1´ 2b ln 2` op1q ď α

and
4bα2

1´4α2 ď 1 ô 4p1` bqα2 ď 1 ô α ď 1
2

b

1
1`b .

4.2. Improved algorithms for BDD 53

4.2.2 BDD when ε is large
The inequality (2.4) in Lemma 2.25 tells us that if we take an extremely small ε to compute the
BDD oracle, we can find a BDD oracle with αpLq almost 1{2. However the time complexity for
each call of the oracle will be very costly. On the other hand, if we use the inequality (2.3) in
Lemma 2.25 with a larger ε, each call of the oracle will take much less time, but the constraint
on the decoding coefficient α will be different. It is therefore important to study this second
regime as well. Note that inequality (2.3) actually applies to all ε P p0, 1q but is mostly useful
when ε is large.

Lemma 4.4. For any sufficiently large n, any lattice L Ă Rn and any 1
n log2 3 ď A ď 1, there

exists a randomized algorithm that creates a α-BDD oracle in time 2pA`1qn{2`opnq and space
20.5n`opnq, where α “ 2´A

?
A
?

2e ln 2
2βpLq ´ op1q. Every call to this oracle takes time 2An{2`opnq and

space polypnq, excluding the space of the preprocessed data.

Proof. Let ε “ 2´An, A ď 1 to be fixed later. We know that ηεpL˚q ą η1{3pL˚q for any
sufficiently large n (n ą 1

A log2 3) by the monotonicity of the smoothing parameter function.
Hence the DGSmη1{3

sampler from Lemma 4.1 can be used as a DGSmηε sampler, for any m P N.
By Theorem 2.40 and Remark 2.41 we can construct a α´BDD such that each call takes

time m ¨ polypnq “ 2An{2`opnq and space polypnq, where α “ φpLq{λ1pLq “
?

lnp1{εq{π´op1q
2ηεpL˚qλ1pLq

and m “ Opn logp1{εq
?
ε

q “ 2An{2`opnq. The preprocessing consists of polypnq calls to the DGSmηε
sampler described above and requires space m ¨ polypnq. Hence the total complexity is
polypnq ¨m ¨ 2n{2`opnq “ 2pA`1qn{2`opnq in time and 2An{2`opnq ď 2n{2`opnq in space. By using
inequality (2.3), in Lemma 2.25, we have that

λ1pLqηεpL˚q ă
c

βpLq2n
2πe ¨ ε´1{np1` op1qq.

Hence we can guarantee that

α “

a

lnp1{εq{π ´ op1q
2ηεpL˚qλ1pLq

ą
1
2

d

2e ln 1
ε ´ op1q
n

¨βpLq´1ε
1
n ¨p1´op1qq “ 2´A

?
A ¨
?

2e ln 2
2βpLq ´op1q.

Corollary 4.5. For any n ě 2, any integer m ą 0, any lattice L Ă Rn and any
?
e ln 3?

2nβpLq ď α ď
1

2βpLq , where b “ log2 βpLq, there exists a randomized algorithm that creates pα` op1qq-BDD
oracle in time 2pA`1qn{2`opnq and space 2n{2`opnq, such that each call takes time 2An{2`opnq and
space polypnq, excluding the space of the preprocessed data, where

A “ ´ 1
2 ln 2W p´

4α2βpLq2
e q

where W is the principal branch of the Lambert W function. Furthermore, the above expression
of A is a continuous and increasing function of βpLq.

54 Chapter 4. New Space Efficient Provable Algorithms for the SVP

Proof. By Lemma 4.4, we can build an oracle for any 1
n log2 3 ď A ď 1 such that the decoding

radius is α “ 2´A
?
A
?

2e ln 2
2βpLq ´ op1q. Hence, we want to find A such that

2´A
?
A
?

2e ln 2
2βpLq “ α and 1

n log2 3 ď A ď 1.

Let f : A ÞÑ 2´A
?
A so that the first condition is equivalent to

fpAq “ 2αβpLq
?

2e ln 2 . (4.1)

Now assume that (4.1) holds and let y “ ´2A lnp2q, then it is equivalent to

eyy “ ´2 lnp2q2α2βpLq2
e ln 2 ,

that is
eyy “ ´4α2βpLq2

e . (4.2)

This equation admits a solution if and only if

´
4α2βpLq2

e ě ´1
e ô α ď 1

2βpLq . (4.3)

Assuming this is the case, (4.2) can admit up to two solutions. However, since the complexity
increases with A, we want the solution that minimizes A, i.e. that maximizes y. The largest of
the (up to) two solutions of (4.2) is always given by be the principal branch W of the Lambert
W function:

y “W p´4α2βpLq2
e q that is A “ ´ 1

2 ln 2W p´
4α2βpLq2

e q (4.4)

and always satisfies y ě ´1. In particular, we always have A ď 1
2 ln 2 . Now check that f is

strictly increasing over r0, 1
2 ln 2 s. Hence, the condition 1

n log2 3 ď A is equivalent to

fp 1
n log2 3q ď fpAq

ô fp 1
n log2 3q2 ď

´

2αβpLq
?

2e ln 2

¯2
by (4.1)

ô 2´
2
n log2 3 1

n log2 3 ď 2α2βpLq2
e ln 2

ô e ln 3
2nβpLq2 9´

1
n ď α2

ð e ln 3
2nβpLq2 ď α2. (4.5)

In summary, we can always take A as in (4.4) assuming (4.3) and (4.5) hold.

4.2.3 Putting everything together
We have analyzed the construction of α-BDDs in two regimes, based on Lemma 4.1. It is
not a priori clear which construction is better and in fact we will see that it depends in a
nontrivial way on the relation between α and βpLq.

4.2. Improved algorithms for BDD 55

Theorem 4.6. For any sufficiently large n, any m ą 0, any
?
e ln 3?

2nβpLq ď α ă 1
2

b

1
1`b and any

lattice L Ă Rn, there exists a randomized algorithm that creates a pα` op1qq-BDD oracle in
time 2pA`1qn{2`opnq and space 2n{2, such that each call takes time 2An{2`opnq and space polypnq,
excluding the space of the preprocessed data, where

A “

#

´ 1
2 ln 2W p´

4α2βpLq2
e q when b ă 1´4α2

2 ln 2
4α2

1´4α2 b when b ě 1´4α2

2 ln 2

where W is the principal branch of the Lambert W function and b “ log2 βpLq. Furthermore,
the above expression of A is a continuous and increasing function of b.

Proof. Let
?
e ln 3?

2nβpLq ď α ă 1
2

b

1
1`b and b “ log2 βpLq. By Corollary 4.3, we can build an α-

BDD if 1
2
?

1´ 2b ln 2 ď α, in which case the complexity will depend on A “ A1pα, bq :“ 4bα2

1´4α2 .
By Corollary 4.5, we can build an α-BDD if α ă 1

2
?

1´ 2b ln 2, in which case the complexity
will depend on A “ A2pα, bq :“ ´ 1

2 ln 2W p´
4α2βpLq2

e q. In both cases, the BDD oracle can
be created in time 2pA`1qn{2`opnq, space 20.5n`opnq and each call takes time 2An{2`opnq. Now
observe that

α ă 1
2
?

1´ 2b ln 2 ô 4α2 ă 1´ 2b ln 2 ô b ă 1´4α2

2 ln 2 .

Let b˚ :“ 1´4α2

2 ln 2 , then there are two cases:

• If b ě b˚ then 1
2
?

1´ 2b ln 2 ď α so only Corollary 4.3 applies and we can build a α-BDD.
In this case the complexity exponent is A1pα, bq “

4α2

1´4α2 b.

• If b ă b˚ then α ă 1
2
?

1´ 2b ln 2 so Corollary 4.5 applies but Corollary 4.3 does not for
this particular value of α. However, we can apply Corollary 4.3 to build a α1-BDD oracle
with α1 ě αmin1 pbq :“ 1

2
?

1´ 2b ln 2 ą α. We will show that the α-BDD of Corollary 4.5
is always more efficient than the α1-BDD of Corollary 4.3 in this case and the complexity
exponent will thus be A2pα, bq “ ´

1
2 ln 2W p´

4α2βpLq2
e q.

Assume that b ă b˚, we claim that A1pα, bq ě A2pα
1, bq for any α1 ě αmin1 pbq. Indeed, on the

one hand A2 is an increasing function of b so

A2pα, bq ă A2pα,
5

18 ln 2q “ ´
1

2 ln 2W p´4α2e´4α2
q “ 4α2

2 ln 2 “
2α2

ln 2 since W pxexq “ x.

On the other hand, A1 is an increasing function of α so

A1pα, bq ě A1pα
min
1 pbq, bq “ 1´2b ln 2

2 ln 2

which is a decreasing function of b, therefore

A1pα, bq ě A1pα
min
1 pb˚q, b˚q “ 1´2b˚ ln 2

2 ln 2 “ 2α2

ln 2 ą A2pα, bq.

Corollary 4.7. For any sufficiently large integer n, any integer m ą 0, any lattice L Ă Rn
there exists a randomized algorithm that creates a 1{3-BDD oracle in time 20.6604n`opnq and
space 20.5n`opnq such that very call to this oracle takes time 20.1604n`opnq and space polypnq,
excluding the space of the preprocessed data.

Proof. By Theorem 4.6, the value of A increases with b “ log2 βpLq. Since b ď 0.401` op1q
and 0.401 ě 5

18 ln 2 , we always have A ď 4
50.401 ` op1q ď 0.3208 ` op1q and we obtain the

result.

56 Chapter 4. New Space Efficient Provable Algorithms for the SVP

4.3 Quantum algorithm for SVP
From [CCL18], we can enumerate all vectors of length p ¨ 1

3λ1pLq by making pn calls to a
1{3-BDD oracle. Although naively searching for the minimum in the set of vectors of length
less than or equal to p ¨ 1

3λ1pLq, will find the origin with high probability, one can work around
this issue by shifting the zero vector. Choosing an arbitrary nonzero lattice vector as the shift,
we are guaranteed to obtain a vector of length at least λ1 for p ě 3. Hence by combining
the 1{3-BDD oracle from Theorem 4.6 and the quantum minimum finding algorithm from
Theorem 2.6, we can find the shortest vector.

Theorem 4.8. For sufficiently large n, there is a quantum algorithm that solves SVP in time
2pA`log2 3`εqn{2`opnq and classical-space 20.5n`opnq with a polynomial number of qubits, where

A “

#

´ 1
2 ln 2W p´

4βpLq2
9e q when b ă 5

18 ln 2
4
5b when b ě 5

18 ln 2

and b “ log2 βpLq. In particular, there is a quantum algorithm that solves SVP in time
20.9529n`opnq and classical-space 20.5n`opnq with a polynomial number of qubits.

Proof. Let B be a basis of the lattice, BDD1{3 be a 1{3-BDD oracle and let f : Zn3 Ñ L be
fpsq “ ´3 ¨ BDD1{3pL, pBsq{3q `Bs. The algorithm works on three quantum registers and
our goal is to build a superposition of states of the form |sy|fpsqy|xy where x “ }fpsq} most
of the time (see the definition of U below). First apply Theorem 4.6 to construct 1{3-BDD
oracle. This oracle runs in time 2An{2`opnq and space polypnq excluding the preprocessed
data. Hence, we can construct a classical circuit of size 2An{2`opnq and space polypnq for this
oracle, by hard-coding the preprocessed data in the circuit. Let ε ą 0 and apply Corollary 2.2
to construct a quantum circuit OBDD of size 2pA`εqn{2`opnq on polypnq qubits that satisfies
OBDD|sy|0y “ |sy|fpsqy for all s P Zn3 . We then construct another quantum circuit U satisfying

Up|ωy|0yq “
#

|ωy|}ω}y if ω ‰ 0
|ωy|}Be1} ` 1y if ω “ 0,

Here e1 P Zn is a vector whose first coordinate is one and the rest are zero. We then consider
the following quantum circuit (we have not drawn ancilla qubits):

OBDD
U

|sy |sy

|0y
|fpsqy

|fpsqy

|0y |}fpsq}y or |}Be1} ` 1y

This circuit O has size 2pA`εqn{2`opnq, satisfies O|sy|0y|0y “ |sy|fpsqy|}fpsq}y if fpsq ‰ 0 and
O|sy|0y|0y “ |sy|fpsqy|}Be1} ` 1y and uses polypnq qubits. We can now apply the quantum
minimum finding algorithm from Theorem 2.6 on the first and third registers and the index
s1 of a shortest vector in this list. The output of the algorithm will be fps1q. As a result of
applying the quantum minimum finding algorithm from Theorem 2.6, the quantum algorithm
takes time 30.5n ¨ 2pA`εqn{2`opnq “ 2pA`log2 3`εqn{2`opnq and classical space 20.5n`opnq with a
polynomial number of qubits.

4.4. Solving SVP by spherical caps on the sphere 57

O

P
2αλ1

r

λ1
φ

Figure 4.1: One can cover the sphere of radius λ1 by balls of radius 2αλ1, where 1
3 ď α ă 1

2 ,
whose centers (here P) are at distance r from the origin O. Each such ball covers a spherical
cap of half-angle φ.

Lastly, we show that the quantum algorithm will output a shortest non-zero vector with
constant probability. Since }Be1} ` 1 ą λ1pLq, with at least 1{2 probability one will find
the index i such that fpiq is a shortest nonzero vector by using the quantum minimum
finding algorithm. Therefore it suffices to show that there is an index i P Zn3 such that
}fpiq} “ λ1pLq. By Theorem 2.35, the list tfpsq|s P Zn3u contains all lattice points in a ball of
radius 3 ¨ 1

3λ1pLq “ λ1pLq from 0, including the lattice vector with length λ1pLq. Hence with
at least 1{2 probability, the algorithm outputs a non-zero shortest lattice vector.

By the proof of Corollary 4.7, we can always take A ď 0.3208` op1q in the construction of
the 1{3-BDD. Hence by taking a suitably small ε, the exponent of the running time becomes
pA` log2 3` εqn{2` opnq “ 0.9529n` opnq.

4.4 Solving SVP by spherical caps on the sphere
We now explain how to reduce the number of queries to the α-BDD oracle. Consider a
uniformly random target vector t such that αp1 ´ 1

nqλ1pLq ď }t} ă αλ1pLq, it satisfies the
condition of Theorem 2.35, i.e. distpL, tq ď αλ1pLq. We enumerate all lattice vectors within
distance 2αλ1pLq of t and keep only the shortest nonzero one. We show that for any α ě 1

3 ,
we will get the shortest nonzero vector of the lattice with probability at least 2´cn`opnq for
some c that depends on α. By repeating this 2cn`opnq times, the algorithm will succeed with
constant probability. The optimal choice of α is not obvious and is deferred to Section 4.5.

Theorem 4.9. Assume we can create an α-BDD oracle, with α ě 1
3 , in time Tc, space Sc such

that each call takes time To. Then there is a randomized algorithm that solves, with constant
probability, SVP in space Sc and time

Tc `
2n`opnqTo

sinn φ

58 Chapter 4. New Space Efficient Provable Algorithms for the SVP

where cosφ “ 1`s2´4α2

2s and s “ minpα,
?

1´ 4α2q. Furthermore, there is a quantum algorithm
that solves SVP in classical space Sc using a polynomial number of qubit and time

Tc `
2n{2`opnqTo

sinn{2 φ
.

Proof. On input lattice LpBq, use the LLL algorithm [LLL82] to get a number d (the norm
of the first vector of the basis) that satisfies λ1pLq ď d ď 2n{2λ1pLq. For i “ 1, . . . , n2, let
di “ d{p1` 1

nq
i. There exists a j such that λ1pLq ď dj ď p1` 1

nqλ1pLq. We repeat the following
procedure for all i “ 1, . . . , n2:

Fix N P N to be fixed later. For j “ 1 to N , pick a uniformly random vector vij on the
surface of the ball of radius rp1´ 1

nqdi. By Theorem 2.35, we can enumerate 2n lattice points
using the function fij : Zn2 Ñ L defined by

fijpxq “ B x´ 2 ¨ BDDαpL, pB x´ vijq{2q. (4.6)

At each step we only store the shortest nonzero vector. At the end, we output the shortest
among them. The running time of the algorithm is straightforward. we make 2n queries
to a α-BDD oracle that takes time To, we further repeat this n2N times. Therefore the
algorithm takes time Tc ` 2n ¨ n2N ¨ To and space Sc. This entire procedure is summarized in
Algorithm 4.1.

Algorithm 4.1 Solving SVP by spherical caps on the sphere
Input: basis B of a lattice L Ă Rn
Input: an α-BDD oracle (for a well-chosen α)
Output: a shortest non-zero vector of L
1: use LLL to get a number d that satisfies λ1pLq ď d ď 2n{2λ1pLq.
2: z Ð any basis vector
3: for i “ 1, . . . , n2 do
4: di Ð dp1` 1

nq
´i

5: r Ð minpα,
?

1´ 4α2q

6: cosφÐ 1`r2´4α2

2r
7: N Ð

Anpλ1q
Vn´1pλ1 sinφq Ź see (4.7)

8: for j “ 1, ..., N do
9: vij Ð random vector of norm rp1´ 1

nqdi
10: for x P t0, 1un do
11: y Ð fijpxq Ź see (4.6)
12: if }y} ă }x} then
13: z Ð y Ź shorter vector
14: end if
15: end for
16: end for
17: end for
18: return z

To prove the correctness of the algorithm, it suffices to show that there exists an i P rn2s
for which the algorithm finds the shortest vector with high probability. Recall that there exists

4.4. Solving SVP by spherical caps on the sphere 59

an i such that λ1pLq ď di ď p1` 1
nqλ1pLq and let that index be k. We will show that for a

uniformly random vector v of length rp1´ 1
nqdk, if we enumerate 2n vectors by the function

f : Zn2 Ñ L,
fpxq “ B x´ 2 ¨ BDDαpL, pB x´ vq{2q,

then with probability δ, whose expression is derived in the next paragraph, there exists x P Zn2
such that fpxq is the shortest nonzero lattice vector; we will then choose N “ 1{δ so that
repeating N times this process finds the shortest vector with probability bounded from below
by a constant.

To that aim, we show that we can cover the sphere of radius λ1 by N balls of radius 2αλ1
whose centers are at distance rp1´ 1

nqdk ď rλ1 from the origin (see Figure 4.1 where we took
r “ α). We have two concentric circles of radius rp1´ 1

nqdk and λ1, and let P be a uniformly
random point on the surface of the ball of radius rp1´ 1

nqdk. A ball of radius 2αλ1 at center
P will cover the spherical cap with angle φ of the ball of radius λ1. For convenience, write
r “ sλ1 for some s. We can calculate the optimal choice of r by noting that if we take the
center of the caps to be at distance r then the angle φ satisfies cosφ “ λ2

1`r
2´4α2λ2

1
2rλ1

“ fpsq by
the law of cosines, where fpxq “ 1`x2´4α2

2x . We want to maximize the angle φ, since the area
we can cover increases with φ. For minimizing cospφq, we minimize f . Note however that we
will apply Theorem 2.35 to enumerate all points inside a ball and this requires the center of
the ball to be at distance at most αλ1 from the origin. Therefore we want to minimize f over
r0, αs. Check that fpxq is decreasing until

?
1´ 4α2 and then increasing. We conclude that

the optimal radius is when s “ minpα,
?

1´ 4α2q.
Now observe that the surface area of any such cap is lower bounded by the surface

area of the base of the cap, which is a pn´ 1q-dimensional sphere of radius λ1 sinφ. Hence
the number of spherical caps required to cover the surface of sphere is in the order of
N :“ Anpλ1q{Vn´1pλ1 sinφq where An (resp. Vn) is the surface area (resp. volume) of a
n-dimensional sphere:

Anpλ1q “
2πn{2λn´1

1
Γpn{2q , Vn´1pλ1 sinφq “ πpn´1q{2λn´1

1 sinn´1 φ

Γppn` 1q{2q . (4.7)

Thus we have
N “

Anpλ1q

Vn´1pλ1 sinφq “
2opnq

sinn´1 φ
.

If we randomly choose the center v of the sphere, the corresponding spherical caps will cover
the shortest vector with probability at least 1{N . By Theorem 2.35, the list tfpxq | x P Zn2u
will contain all lattice points within radius 2αdk from v. Hence, the list will contain a shortest
vector with probability 1{N . By repeating this process N times, we can find the shortest
vector with constant probability. Therefore, an upper bound of the total time complexity of
our method can be expressed as

Tc `
2n`opnqTo

sinn φ .

In the quantum case, we can apply the quantum minimum finding algorithm in Theorem 2.6
to speed up the spherical cap search algorithm: we can build a circuit to generate the random
vectors vij above and therefore build a circuit that associates to every pi, j, sq the lattice vector
fijpsq. By a similar argument to that in proof of Theorem 4.8, we then apply the quantum

60 Chapter 4. New Space Efficient Provable Algorithms for the SVP

minimum finding algorithm on the set of pi, j, sq P rn2s ˆ rN s ˆ r2ns and obtain the shortest
vector of that list by making

?
n2N2n “ 2n{2`opnq

?
N queries to the BDD oracle. The same

argument as above shows that the shortest nonzero vector of the lattice is in that list with
constant probability.

Corollary 4.10. There is a randomized algorithm that solves SVP in time 21.7397n`opnq and
in space 20.5n`opnq with constant probability.

Proof. Apply Theorem 4.6 with2α “ 0.4103: since 0 ď b “ log2 βpLq ď 0.401, we indeed
have that α ă 1

2

b

1
1`b so we can create a pα` op1qq-BDD in time Tc “ 2pA`1qn{2`opnq, space

Sc “ 20.5n`opnq such that each call takes time To “ 2An{2`opnq where A “ Apbq is given by
Theorem 4.6. The theorem also guarantees that Apbq increases with b so A ď Ap0.401q.
But 0.401 ě 1´4α2

2 ln 2 « 0.2356 so Ap0.401q “ 4α2

1´4α2 0.401 « 0.8267 by Theorem 4.6. Apply
Theorem 4.9 to get a randomized algorithm that solves SVP in space Sc and in time

T :“ Tc `
2n`opnqTo

sinn φ

where cosφ “ 1`s2´4α2

2s and s “ minpα,
?

1´ 4α2q. Therefore, 1
sinφ « 1.2537 and

T “ 2pA`1qn{2`opnq ` 2n`An{2´n log2 sinφ`opnq “ 21.7397n`opnq.

4.5 Dependency of the SVP on a quantity related to
the kissing number

In the previous sections, we obtained several algorithms for SVP and bounded their complexity
using the only known bound on the quantity βpLq, which is related to the lattice kissing
number (see Section 2.2): βpLq ď 20.402. The complexity of those algorithms is highly affected
by this quantity and since βpLq can be anywhere between 0 and 20.402 (see Section 2.4), we
will study the dependence of the time complexity in βpLq. Recall that b “ log2 βpLq.

In order to avoid doing the analysis twice, we introduce a factor ν that is 1 for classical
algorithms and 1

2 for quantum algorithms. We now can reformulate the time complexity in
Theorem 4.9 as

Tc `
2νn`opnqTo

sinνn φ (4.8)

where cosφ “ 1`s2´4α2

2s and s “ minpα,
?

1´ 4α2q. We instantiate the algorithm in Theo-
rem 4.9 with α-BDD provided by Theorem 4.6 which satisfies

Tc “ 2pA`1q{n`opnq, To “ 2An{2`opnq and Sc “ 20.5n`opnq

where

A “

#

´ 1
2 ln 2W p´

4α2βpLq2
e q when b ă 1´4α2

2 ln 2
4α2

1´4α2 b when b ě 1´4α2

2 ln 2
.

2The optimal value of α was found numerically, see Section 4.5.

4.5. Dependency of the SVP on a quantity related to the kissing number 61

Since ν P t1
2 , 1u, we can simplify the expression of the time complexity to

2pA{2`νqn`opnq

sinνn φ . (4.9)

However, the optimal choice of α is not obvious: by increasing the decoding radius, we reduce
the number of queries but increase the cost of each queries. Since there seems to be no
closed-form expression for the optimal value of α, we express as an optimization program.
Formally, we have T “ 2c1pb,νqn`opnq where

cpb, νq “ min
αPr

1
3 ,

1
2 q

A
2 ` ν ´

ν
2 log2p1´ cos2 φq

where A and cosφ are given by the expressions above that depend on α. We numerically
computed the graph of this function and plotted the result on Figures 4.2 and 4.3 for the
classical and quantum algorithms respectively.

For completeness, we can also consider a classical version of our quantum algorithm in
Section 4.3 and we then obtain algorithm in time 2c3pν,bqn`opnq where

c1pν, bq “ ν log2 3` 1
2

#

´ 1
2 ln 2W p´

4βpLq2
9e q when b ă 5

18 ln 2
4
5b when b ě 5

18 ln 2
.

We also plotted the resulting graph on Figure 4.2 and Figure 4.3 to compare against the
spherical caps algorithms. In particular, we obtain the following result when γpLq “ βpLqn is
subexponential in n:

Theorem 4.11. For any family pLnqn of full-rank lattices such that Ln Ď Rn and βpLnqn “
2opnq, there is a classical (resp. quantum) algorithm that solves the SVP on Ln in time
21.292n`opnq (resp. 20.750n`opnq), in space 20.5n (plus polypnq qubits in the quantum case).

62 Chapter 4. New Space Efficient Provable Algorithms for the SVP

0 0.1 0.2 0.3 0.4

1.3

1.4

1.5

1.6

1.7

b

cp
bq

Classical spherical capping
Classical version of the algorithm in Section 4.3

Figure 4.2: (Exponent cpbq of the) time complexity of the classical version of the quantum
algorithm in Section 4.3 and the spherical capping algorithm, plotted against b “ log2 βpLq.
The complexity of the algorithms is 2cpbqn`opnq.

0 0.1 0.2 0.3 0.4

0.8

0.9

1

b

cp
bq

Quantum spherical capping
Quantum algorithm in Section 4.3

Figure 4.3: (Exponent cpbq of the) time complexity of the quantum algorithm in Section 4.3
and the quantum spherical capping algorithm, plotted against b “ log2 βpLq. The complexity
of the algorithms is 2cpbqn`opnq.

Chapter5Enumeration Algorithms for the
Shortest Vector Problem

The work in this chapter has been published at ASIACRYPT 2018 [ANS18] and is a joint
work with Yoshinori Aono and Phong Nguyen.

5.1 Introduction
Enumeration is the simplest algorithm to solve SVP/CVP: it outputs LXB, given a lattice
L and an n-dimensional ball B Ď Rn. Dating back to the early 1980s [Poh81, Kan83],
it has been significantly improved in practice in the past twenty years, thanks to pruning
methods introduced by Schnorr et al. [SE94b, SH95, Sch03], and later revisited and generalized
as cylinder pruning [GNR10] and discrete pruning [AN17]: these methods offer a trade-off
by enumerating over a subset S Ď B, at the expense of missing solutions. In cylinder
pruning [GNR10], S is the intersection of n cylinders. In discrete pruning [AN17], S is the
intersection of B with the union P of many disjoint boxes.

One may only be interested in finding one point in LX S (provided it exists), or the ‘best’
point in L X S, i.e. a point minimizing the distance to a target (zero for SVP or given as
input for CVP). Enumeration and cylinder pruning compute LXS by a depth-first search of a
tree with super-exponentially many nodes. Discrete pruning is different, but the computation
of S also relies on a depth-first search in a tree.

Discrete Pruning. This technique relies on the selection of finite number of disjoint boxes
that define a set P which is called a pruning set. One then enumerates points in LXB X P .
The particular choice of P is very important for the complexity of this method. It is common
to define P from a partition C: given a set of tags T Ď Zn, each tag t P T defines a set Cptq
that contains exactly one lattice point (that is easy to compute from t). We then select a finite
subset U Ă T of tags that define P “

Ť

tPU Cptq. Babai’s partition and the natural partition
are the most natural choices for C because they define what is called universal partition, a
property that makes them suitable to solve CVP using this technique. Once the partition has
been fixed, it remains to choose U in such way to maximize the success probability of the
algorithm. A typical strategy is to fix an integer m, quantifying the effort one is willing to
spend on the method, and to search for the best m boxes, where the “quality” of each box
is quantified by a function gptq that evaluates its success probability. Since that cost can be
difficult to compute, it is sometimes replaced by simpler functions that have experimentally
been confirmed to corrolate well with the exact cost. To the best of our knowledge, no formal
analysis on how to choose m has been conducted. Hence, in practice, the entire complexity

63

64 Chapter 5. Enumeration Algorithms for the Shortest Vector Problem

of the algorithm is expressed as a function of m, which is taken as big as possible given the
available computing resources.

Quadratic Quantum Speed-up. Enumeration algorithms can naturally be viewed as doing
a depth-first search on a (super-exponential in n) tree. Some leaves are marked when they
contain a lattice point and the goal is either to find one marked node or all of them. Note that
the tree is usually only defined locally: given a node, the algorithm can determine its children.
Given such an algorithm, we can apply quantum algorithms such as Montanaro’s [Mon15] to
find a marked one in time proportional to

?
t where t is the size of the tree. Since a classical

algorithm might have to search entire tree, this can provide a quantum quadratic speed-up. In
reality, one cannot just apply naively Montanaro’s algorithm because some important technical
details such as the degree of the tree and estimates on size of the tree need to be examined
first. Furthermore, in the case of extreme pruning [GNR10], the enumeration process usually
only succeeds with small probability and will be repeated a large number of times. A naive
approach would be to repeat the process k times to obtain a k

?
t complexity, but we will see

that we can obtain a much better speedup.

Contributions. We show that lattice enumeration and its cylinder and discrete pruning
variants can all be quadratically sped up on a quantum computer. Interestingly, we show
that this speedup also applies to extreme pruning where one repeats enumeration over many
reduced bases: a naive approach would only decrease to k

?
t quantum operations, but we bring

it down to
?
kt. In doing so, we also clarify the application of Montanaro’s algorithm [Mon15]

to enumeration with cylinder pruning, which was incomplete. We also develop two tweaks to
discrete pruning. The first one enables to solve CVP and BDD (and in particular LWE-type
instances). The second deals with the selection of optimal discrete pruning parameters, and is
crucial for our quantum variant: We design a provably efficient (and even optimal in some
cases) algorithm to find the best m tags when gptq satisfies certain conditions. Our theoretical
analysis has also been validated by experiments. A detailed description of our contributions is
available in Section 1.1.3.

5.2 Enumeration Algorithms and Pruning
Let L be a full-rank lattice in Rn. Given a target u P Qn, a basis B “ pb1, . . . ,bnq of L
and a radius R ą 0, enumeration [Poh81, Kan83] outputs L X S where S “ Bnpu, Rq: by
comparing all the distances to u, one extracts a lattice vector closest to u. The enumeration
requires to generalize the problem slightly as follows: given a (shifted) lattice u ` L and a
ball S, output pu` Lq X S. The algorithm performs a recursive search using projections, to
reduce the dimension of the lattice. First we compute the projection on the last coordinate
of the Gram-Schmidt basis: πnpu ` Lq is an one-dimensional shifted lattice and πnpSq is
an one-dimensional ball, and we can easily enumerate πnpu ` Lq X πnpSq. Then, for each
z P πnppu` Lq X Sq, we consider the hyperplane Hz “ tx P Rn : πnpxq “ zu and we observe
that pu`LqXHz is a pn´1q´dimensional shifted lattice and SXHz is a pn´1q´dimensional
ball, so it suffices to recursively enumerate the intersection. Concretely, it can be viewed as a
depth-first search of the enumeration tree T : the nodes at depth n` 1´ k are the points of
πkpLq X S. Figure 5.1 illustrates this process on an example.

5.2. Enumeration Algorithms and Pruning 65

The running-time of enumeration depends on R and B, but is typically super-exponential
in n, even if LX S is small. Indeed, at the ith recursion step the one-dimensional intersection
will yield 1` t2r{

›

›b‹i
›

›u points, where r is the radius of the ball (which depends on the previous
choices). Since the radius of the ball only decreases during the recursion, we have r ď R , so
in particular, the tree will have at most

śn
i“1p1` t2R{

›

›b‹i
›

›uq nodes. A rigorous bound on the
number of nodes exists. For instance, if the basis is LLL-reduced, and R “ }b1}, then it is
well-known that the number of nodes is at most 2Opn2q. Also [HS07] showed that if the basis is
so-called quasi-HKZ-reduced, and R “ }b1}, then the number of nodes is at most nn{2e`opnq.

x2

b1

b2
b‹2

R

root

´2

´1

0

1

2

O

O

O

O

O

Figure 5.1: Example of enumeration in a lattice spanned by b1, b2 with a ball of radius R “ 5,
and the corresponding enumeration tree T . The first level of the tree corresponds to the
possible choices of x2 “ π2pvq, the projection on Rb‹2, for any v P LXB2pRq. The enumeration
algorithm then proceeds recursively: for each choice z of x2, one can consider the intersection
of L with the hyperplane x2 “ z: this is a (possibly shifted) one-dimensional lattice. The
intersection of the ball of radius R with this hyperplane also produces a one-dimensional ball
of smaller radius (which depends on z). Hence for each x2, we have a new one-dimensional
enumeration sub-problem on a shifted lattice. The second level of the tree corresponds to the
enumerated lattice points in each new sub-problem.

5.2.1 Pruned Enumeration
Pruned enumeration, introduced by [SE94b, SH95] and formalized by [GNR10, AN17], uses a
pruning set P Ď Rn and outputs LX pu` P q. The advantage is that for suitable choices of P ,
enumerating LX pu` P q is much cheaper than LX S, and if we further intersect LX pu` P q
with S, we may have found non-trivial points of LXS. Note that we use u`P rather than P ,
because it is natural to make P independent of u, and it is what happens when one uses the
pruning of [GNR10] to search for close vectors. Following [GNR10], we view the pruning set
P as a random variable: it depends on the choice of basis B. When the pruned enumeration

66 Chapter 5. Enumeration Algorithms for the Shortest Vector Problem

fails, we can simply repeat the process with many different P ’s until we solve the problem.
We distinguish two cases, which were considered separately in [AN17, GNR10]:

Approximation setting: Here, we are interested in finding any point in LX S X pu` P q by
enumerating LX pu` P q then intersecting it with the ball S, so we define the success
probability as:

Pr
succ

“ Pr
P,u
pLX S X pu` P q ‰ Hq, (5.1)

which is the probability that it outputs at least one point in L X S. By (slightly)
adapting the reasoning of [AN17] based on the Gaussian heuristic, we estimate that (5.1)
is heuristically

Pr
succ

« minp1, volpS X pu` P qq{covolpLqq, (5.2)

and that the number of elements of LXSXpu`P q is roughly volpSXpu`P qq{covolpLq.

Unique setting: Here, we know that the target u is unusually close to the lattice, that is
L X S is a singleton, and we want to find the closest lattice point to u: this is the
so-called Bounded Distance Decoding problem (BDD), whose hardness is used in most
lattice-based encryption schemes. Thus, u is of the form u “ v ` e where v P L and
e P Rn is very short, and we want to recover v. [GNR10] studied the exact SVP case,
where one wants to recover a shortest lattice vector (in our setting, if the target u P L,
the BDD solution would be u, but one could alternatively ask for the closest distinct
lattice point, which can be reduced to finding a shortest lattice vector). We are only
interested in finding the closest lattice point v P L, so we define the success probability
as:

Pr
succ

“ Pr
P,u
pv P LX pu` P qq, (5.3)

because we are considering the probability that the solution v belongs to the enumerated
set LX pu` P q. Usually, the target u is derived from the noise e, which has a known
distribution, then we can rewrite (5.3) as:

Pr
succ

“ Pr
P,e
p0 P e` P q “ Pr

P,e
p´e P P q. (5.4)

In the context of SVP, we would instead define Prsucc “ PrP pv P P q where v is a shortest
lattice vector. In general, it is always possible to make u depend solely on e: one can
take a canonical basis of L, like the HNF, and use it to reduce u modulo L, which only
depends on e. Whether PrP,ep´e P P q can be evaluated depends on the choice of P and
the distribution of the noise e. For instance, if the distribution of ´e is uniform over
some measurable set E, then:

Pr
P,e
p´e P P q “ volpE X P q

volpEq .

We analyze the most important noise distributions in Section 5.2.6.

5.2. Enumeration Algorithms and Pruning 67

We have discussed ways to estimate the success probability of pruned enumeration. In
summary, to estimate the running time of the full algorithm, we need the following information,
which depends on the choice of pruning:

• an estimate of the cost of enumerating LX S X pu` P q,

• an estimate of the cost of computing the (random) reduced basis B,

• in the approximate setting: an estimate of volpS X pu` P qq,

• in the unique setting: an estimate of volpE X P q.

5.2.2 Cylinder Pruning
The first pruning set P ever used is the following generalization [GNR10] of [SE94b, SH95].
Fix a bounding function f : t1, . . . , nu Ñ r0, 1s, a radius R ą 0 a lattice basis B “ pb1, . . . ,bnq
and define

Pf pB,Rq “ tx P Rn s.t. }πn`1´ipx´ uq} ď fpiqR for all 1 ď i ď nu, (5.5)

where the πi’s are the Gram-Schmidt projections defined by B. We call cylinder pruning
this form of enumeration, because Pf pB,Rq is an intersection of cylinders: each inequality
}πn`1´ipx´ uq} ď fpiqR defines a cylinder.

Gama et al. [GNR10] showed how to efficiently compute tight lower and upper bounds
for volpPf pB,Rqq, thanks to the Dirichlet distribution and special integrals. Then we can do
the same for volpPf pB,Rq X Sq if S is any zero-centered ball. Using the shape of Pf pB,Rq,
[GNR10] also estimated of the cost of enumerating L X S X Pf pB,Rq, using the Gaussian
heuristic on projected lattices πipLq: these estimates are usually accurate in practice, and
they can also be used in the CVP case [LN13]. To optimize the whole selection of parameters,
one finally needs to take into account the cost of computing the (random) reduced basis B:
for instance, this is done in [CN11, AWHT16]. In Section 5.3, we show a quantum quadratic
speed-up of cylinder pruning.

5.2.3 Discrete Pruning
Discrete pruning is based on lattice partitions defined as follows. An L-partition is a partition
C of Rn such that:

• The partition is countable: Rn “
Ť

tPT Cptq where T is a countable set, and CptqXCpt1q “
H whenever t ‰ t1.

• Each cell Cptq contains a single lattice point, which can be found efficiently: given any
t P T , one can “open” the cell Cptq, i.e. compute Cptq X L in polynomial time. In other
words, the partition defines a function g : T Ñ L where Cptq X L “ tgptqu, and one can
compute g in polynomial time.

Two useful L-partitions, illustrated in Figure 5.2 and defined below, were presented in [AN17]:
Babai’s partition where T “ Zn and each cell Cptq is a box of volume covolpLq; and the natural
partition where T “ Nn and each cell Cptq is a union of non-overlapping boxes, with total
volume covolpLq.

68 Chapter 5. Enumeration Algorithms for the Shortest Vector Problem

b1

b2

b‹2

O

b1

b2b‹2
O

p0,0q
p1,0q p2,0q

p0,1q

p0,2q

p1,1q p2,1q

p1,2q p2,2q

p1,0qp2,0q

p0,1q

p0,2q

p1,1qp2,1q

p1,2qp2,2q

p1,1q p2,1q

p1,2q p2,2q

p1,1qp2,1q

p1,2qp2,2q

Figure 5.2: Example lattice with its corresponding Babai’s and natural partition. The different
cells have different colors and are tagged.

Universal Lattice Partitions. While sufficient for the SVP, L-partitions are not sufficient
in general for our framework: if P “

Ť

tPU Cptq, then LX pP ` uq “
Ť

tPU pLX pCptq ` uqq but
the number of elements in LX pCptq ` uq is unclear, and it is also unclear how to compute
LXpCptq`uq efficiently. To fix this, we could compute instead LXP XS “

Ť

tPU pLXCptqqXS,
but that creates two issues:

• In the unique setting, it is unclear how we would evaluate success probabilities. Given a
tag t and a target u “ v` e where e is the noise and v P L, we would need to estimate
the probability that v P Cptq, i.e. u´ e P Cptq.

• We would need to select the tag set U depending on the target u, without knowing how
to evaluate success probabilities.

The most natural solution is to subtract u to the lattice L as follows. We say that an L-partition
C is universal if for all u P Qn, the shifted partition C ` u is an L-partition. In particular, this
means that for any u P Qn, each cell Cptq contains a single point in L´ u “ tv´ u,v P Lu,
which can be found efficiently: given any t P T and u P Qn, one can “open” the cell u` Cptq,
i.e. compute pu` Cptqq X L in polynomial time.

Unfortunately, an L-partition is not necessarily universal, even in dimension one. Indeed,
consider the L-partition C with T “ Z defined as follows: Cp0q “ r´1{2, 1{2s; For any k ą 0,
Cpkq “ pk ´ 1{2, k ` 1{2s; For any k ă 0, Cpkq “ rk ´ 1{2, k ` 1{2q. It can be checked that
C is not universal: the shifted cell Cp0q ` 1{2 contains two lattice points, namely 0 and 1.
Fortunately, we will show Babai’s partition and the natural partition are actually universal,
see Section 5.2.7 for the proofs.

5.2. Enumeration Algorithms and Pruning 69

Lemma 5.1 (Babai’s partition). Let B be a basis of a full-rank lattice L in Zn. Let T “ Zn
and for any t P T , CZptq “ tB‹ ` D where D “ t

řn
i“1 xib‹i s.t. ´ 1{2 ď xi ă 1{2u. Then

Babai’s partition pCZ, T q is universal.

Lemma 5.2 (Natural partition). Let B be a basis of a full-rank lattice L in Zn. Let T “ Nn
and for any t “ pt1, . . . , tnq P T , CNptq “ t

řn
i“1 xib‹i s.t. ´ pti ` 1q{2 ă xi ď ´ti{2 or ti{2 ă

xi ď pti ` 1q{2u. Then the natural partition pCN, T q is universal.

Discrete Pruning. Once a universal partition pC, T q has been selected, discrete pruning
is obtained by selecting the pruning set P as the union of finitely many cells Cptq, namely
P “

Ť

tPU Cptq for some finite U Ď T . Then L X pu ` P q “
Ť

tPU pL X pu ` Cptqqq can be
enumerated by opening each cell u` Cptq for t P U : see Algorithm 5.1.

In theory one would like to select the cells Cptq which maximize volpCptq X Sq: [AN17]
shows how to compute volpCptqXSq, but an exhaustive search to derive the best volpCptqXSq
exactly would be too expensive. We discuss the selection of tags in Section 5.2.5.

Algorithm 5.1 Closest Vector Discrete Pruning from Universal Lattice Partitions
Input: A target vector u P Qn, a universal lattice partition pC, T q, a finite subset U Ď T and

if we are in the approximation setting, a radius R.
Output: LX pu` pS X P qq where S “ BnpRq and P “

Ť

tPU Cptq.
1: R “ H
2: for t P U do
3: Compute LX pu` Cptqq by opening u` Cptq: in the approx setting, check if the output

vector is within distance ď R to u, then add the vector to the set R. In the unique setting,
check if the output vector is the solution.

4: end for
5: Return R.

5.2.4 Success Probability
In Section 5.2.1, we saw that the probability of success needs to be evaluated to understand the
complexity the pruned enumeration. In the case of discrete pruning, this probability depends
on the selection of tags. In this section, we consider a general framework under which we can
optimize the selection of tags for discrete pruning. We distinguish two cases:

Approximation setting: based on (5.2), the success probability can be derived from

volpS X pu` P qq “
ÿ

tPU
volpBnpRq X Cptqq. (5.6)

This is exactly the same situation as in the SVP case already tackled by [AN17].
They showed how to compute volpBnpRq X Cptqq for Babai’s partition and the natural
partition by focusing on the intersection of a ball with a box H “ tpx1, . . . , xnq P
Rn s.t. αi ď xi ď βiu: In the case of Babai’s partition, each cell CZptq is a box. In
the case of the natural partition, each cell CNptq is the union of 2j symmetric (non-
overlapping) boxes, where j is the number of non-zero coefficients of t. It follows that

70 Chapter 5. Enumeration Algorithms for the Shortest Vector Problem

volpCNptq X BnpRqq “ 2jvolpH X Sq, where H is any of these 2j boxes. They also
showed how to approximate a sum

ř

tPU volpBnpRq X Cptqq in practice, without having
to compute separately each volume.

Unique setting: Based on (5.4), if the noise vector is e, then the success probability is

Pr
succ

“ Pr
P,e
p´e P P q “

ÿ

tPU
Pr
P,e
p´e P Cptqq (5.7)

It therefore suffices to compute the cell probability PrP,epe P Cptqq, instead of an
intersection volume. Similarly to the approximation setting, we might be able to
approximate the sum

ř

tPU PrP,epe P Cptqq without having to compute individually each
probability. In Section 5.2.6, we focus on the natural partition: we discuss ways to
compute the cell probability PrP,epe P Cptqq depending on the distribution of the noise
e.

In both cases, we see that the success probability is of the form:

Pr
succ

“
ÿ

tPU
fptq, (5.8)

for some function f : T Ñ r0, 1s such that
ř

tPT fptq “ 1, where (5.8) is rigorous for the unique
setting, and heuristic for the approximation setting due to the Gaussian heuristic. If ever
the computation of f is too slow to compute individually each term of

ř

tPU fptq, we can use
the statistical inference techniques of [AN17] to approximate (5.8) from the computation of
a small number of fptq. Note that if we know that the probability is reasonably large, say
ą 0.01, we can alternatively use Monte-Carlo sampling to approximate it.

5.2.5 Selecting Tags
We would like to select the finite set U of tags to maximize Prsucc given by (5.8). Let us
assume that we have a function f : T Ñ R` such that

ř

tPT fptq converges. If (5.8) provably
holds, then

ř

tPT fptq “ 1, so the sum indeed converges. Since T is infinite, this implies that
for any B ą 0, the set tt P T s.t. fptq ą Bu is finite, which proves the following elementary
result:

Lemma 5.3. Let T be an infinite countable set. Let f : T Ñ R` be a function such that
ř

tPT fptq converges. Then for any integer m ą 0, there is a finite subset U Ď T of cardinal m
such that fptq ď minuPU fpuq for all t P T zU . Such a subset U maximizes

ř

uPU fpuq among
all m-size subsets of T .

Any such subset U would maximize Prsucc among all m-size subsets of T , so we would
ideally want to select such a U for any given m. And m quantifies the effort we want to
spend on discrete pruning, since the bit-complexity of discrete pruning is exactly m poly-time
operations.

Now that we know that optimal subsets U exist, we discuss how to find such subsets U
efficiently. In the approximation setting of [AN17], the actual function f is related to volumes:
we want to select the k cells which maximize volpBnpRq X Cptqq among all the cells. This
is too expensive to do exactly, but [AN17] provides a fast heuristic method for the natural

5.2. Enumeration Algorithms and Pruning 71

partition, by selecting the cells Cptq minimizing EtCNptqu: given as input m, it is possible to
compute efficiently in practice the tags of the m cells which minimize

EtCNptqu “
n
ÿ

i“1

ˆ

t2i
4 `

ti
4 `

1
12

˙

}b‹i }2.

In other words, this is the same as replacing the function f related to volumes by the function

hptq “ e
´
řn
i“1

ˆ

t2
i
4 `

ti
4 `

1
12

˙

}b‹i }
2

,

and it can be verified that
ř

tPNn hptq converges. In practice (see [AN17]), the m cells
maximizing hptq (i.e. minimizing EtCNptqu) are almost the same as the cells maximizing
volpBnpRq X Cptqq. However, the method of [AN17] was only heuristic. In Section 5.4, we
modify that method to make it fully provable: for any integer m ą 0, we can provably find
the best m cells in essentially m polynomial-time operations and polynomial space (the m
solutions are output as a stream).

5.2.6 Noise Distributions in the Unique Setting
We discuss how to evaluate the success probability of BDD discrete pruning in the unique
setting for the natural partition. This can easily be adapted to Babai’s partition, because it
also relies on boxes. Following (5.7), it suffices to evaluate:

pptq “ Pr
P,e
pe P ´Cptqq, (5.9)

where P is the (random) pruning set, e is the BDD noise and Cptq is the cell of the tag t. We
now analyze the most frequent distributions for e.

5.2.6.1 LWE and Gaussian Noise.

The most important BDD case is LWE [Reg05]. However, there are many variants of LWE
using different distributions of the noise e. We will use the continuous Gaussian distribution
over Rn, like in [Reg05]. Many schemes actually use a discrete distribution, such as some
discrete Gaussian distribution over Zn (or something easier to implement): because this
is harder to analyze, some cryptanalysis papers such as [LP11, LN13] prefer to ignore this
difference, and perform experiments to check if it matches with the theoretical analysis. The
main benefit of the Gaussian distribution over Rn is that for any basis, each coordinate is a
one-dimensional Gaussian.

Lemma 5.4. Let t “ pt1, . . . , tnq P Nn be a tag of the natural partition CNpq with basis
B “ pb1, . . . ,bnq. If the noise e follows the multivariate Gaussian distribution over Rn with
parameter σ, then:

pptq “
n
ź

i“1

ˆ

erf
ˆ

1
?

2σ
¨
ti ` 1

2 ¨ }b‹i }
˙

´ erf
ˆ

1
?

2σ
¨
ti
2 ¨ }b

‹
i }

˙˙

(5.10)

72 Chapter 5. Enumeration Algorithms for the Shortest Vector Problem

Proof. Each cell is a product of 2n boxes, so the CDF of the Gaussian distribution gives:

pptq “ 2n
n
ź

i“1

1
2

ˆ

erf
ˆ

1
?

2σ
¨
ti ` 1

2 ¨ }b‹i }
˙

´ erf
ˆ

1
?

2σ
¨
ti
2 ¨ }b

‹
i }

˙˙

“

n
ź

i“1

ˆ

erf
ˆ

1
?

2σ
¨
ti ` 1

2 ¨ }b‹i }
˙

´ erf
ˆ

1
?

2σ
¨
ti
2 ¨ }b

‹
i }

˙˙

5.2.6.2 Spherical Noise.

If the noise e is uniformly distributed over a centered ball, we can reuse the analysis of [AN17]:

Lemma 5.5. Let pC, T q be a universal L-partition. Let t P T be a tag. If the noise e is
uniformly distributed over the n-dimensional centered ball of radius R, then:

pptq “ volpCptq XBnpRqq
volpBnpRqq

(5.11)

For both Babai’s partition CZ and the natural partition CN, Cptq is the union of disjoint
symmetric boxes, so the evaluation of (5.11) is reduced to the computation of the volume of a
ball-box intersection, which was done in [AN17].

5.2.6.3 Product of Finite Distributions.

We now consider a general distribution D for the noise e where each coordinate ei is inde-
pendently sampled from the uniform distribution over some finite set. This includes the box
distribution, which is the uniform distribution over a set of the form

śn
i“1tai, . . . , biu. The

continuous Gaussian distribution and the uniform distribution over a ball are both invariant by
rotation. But if the noise distribution D is not invariant by rotation, the tag probability pptq
may take different values for the same p}b‹1}, . . . , }b‹n}q, which is problematic for analysing the
success probability. To tackle this issue, we reuse the following heuristic assumption introduced
in [GNR10]:

Heuristic 5.6 ([GNR10, Heuristic 3]). The distribution of the normalized Gram-Schmidt
orthogonalization pb‹1{||b‹1||, . . . ,b‹n{||b‹n||q of a random reduced basis pb1, . . . ,bnq looks like
that of a uniformly distributed orthogonal matrix.

We obtain:

Lemma 5.7. Let CN be the natural partition. Let t P Nn be a tag. If the distribution of the
noise e has finite support, then under Heuristic 5.6:

pptq “
ÿ

rPE

Pr
e
p}e} “ rq ˆ Pr

xÐSn
px P Cptq{rq (5.12)

where E Ď Rě0 denotes the finite set formed by all possible values of }e} and Sn denotes the
n-dimensional unit sphere.

5.2. Enumeration Algorithms and Pruning 73

Proof. It suffices to decompose the noise e as e “ }e}ˆ e
}e} . The variable }e} only takes finitely

many values, and because of Heuristic 5.6,

Pr
e

ˆ

´r
e
}e} P Cptq

˙

“ Pr
xÐSn

px P Cptq{rq.

5.2.7 Universality proof of Babai’s and the natural partition
In this section, we show that Babai’s partition and the natural partition are universal.

Proof of universality of Babai’s partition (Lemma 5.1). We already know from [AN17] that
pCZ, T q is a L-partition. To show that it is actually universal, it suffices to show that for all
u P Qn, pu ` CZptqq X L is always a singleton, which can be found in polynomial time. To
see this, note that Babai’s nearest plane algorithm [Bab85] implies that for any t P Zn and
any u P Rn, there is a unique v P L such that v´ u´ tB‹ P D, and that v can be found in
polynomial time when u P Qn. It follows that pu` CZptqq X L “ tvu.

Algorithm 5.2 Universal cell opening for Babai’s partition from Babai’s Nearest Plane
algorithm [Bab85]
Input: A tag t P Zn, a target u P Qn, and a basis B “ pb1, . . . ,bnq P Qn of a lattice L, with

Gram-Schmidt orthogonalization B‹.
Output: v P L such that tvu “ LX pu` CZptqq
1: v Ð 0 and w Ð u` tB‹
2: for i :“ n downto 1 do
3: Compute the integer c closest to xb‹i ,wy{xb‹i ,b‹i y
4: w Ð w´ cbi and v Ð v` cbi
5: end for
6: Return v

Proof of universality of Babai’s partition (Lemma 5.2). We already know that pCN, T q is an
L-partition. Let u P Qn: we can write u “

řn
i“1 uib‹i . Then we only need to show that

the shifted cell u ` CNptq “ t
řn
i“1pui ` xiqb‹i s.t. ´ pti ` 1q{2 ă xi ď ´ti{2 or ti{2 ă xi ď

pti ` 1q{2u contains only one lattice point which can be found in polynomial time using
Algorithm 5.3. Consider the projection π over the orthogonal supplement to the subspace
spanned by b1, . . . ,bn´1. Then:

πpu` CNptqq “ tpun ` xnqb‹n s.t. ´ ptn ` 1q{2 ă xn ď ´tn{2 or tn{2 ă xn ď ptn ` 1q{2u.

Notice that the union pun ´ ptn ` 1q{2, un ´ tn{2s
Ť

pun ` tn{2, un ` ptn ` 1q{2s only contains
one integer: this is because the number of integers in an interval of the form px, ys is tyu´ txu

when x ě y. And that integer can be found in polynomial time, as shown by Algorithm 5.3.
This shows that πpu` CNptqq X πpLq is a singleton, which can be found in polynomial time.
Algorithm 5.3 iterates this process using projections orthogonally to b1, . . . ,bi.

74 Chapter 5. Enumeration Algorithms for the Shortest Vector Problem

Algorithm 5.3 Universal cell opening for the natural partition: adaptation of [AN17, Algo-
rithm 3]
Input: A tag t P Nn, a target u “

řn
i“1 uib‹i P Qn, and a basis B “ pb1, . . . ,bnq P Qn of a

lattice L, with Gram-Schmidt matrix µ.
Output: v P L such that tvu “ LX pu` CNptqq
1: for i :“ n downto 1 do
2: y Ð ´

řn
j“i`1 vjµj,i and vi Ð tui ` y ` 0.5u

3: if vi ă ui ` y then
4: vi Ð vi ´ p´1qtirti{2s

5: else
6: vi Ð vi ` p´1qtirti{2s

7: end if
8: end for
9: Return

řn
i“1 vibi

5.3 Quantum speed-up of Cylinder Pruning
5.3.1 Tools
The analysis of quantum tree algorithms requires the tree to have constant degree d “ Op1q.
Without this assumption, there is an extra polypdq term in the complexity bound like in
Theorem 2.12. Instead, it is more efficient to first convert the tree into a binary tree, so that
the overhead is limited to polyplog dq. We will use the following conversion (illustrated by
Figure 5.3):

Theorem 5.8. One can transform any tree T of depth n and degree d into a binary one
T2 so that: T2 can be explored locally; T and T2 have roughly the same number of nodes,
namely #T ď #T2 ď 2#T ; the leaves of T and T2 are identical; the depth of T2 is ď n log d.
Moreover, a black-box function P over T can be adapted to a black box P2 for T2, so that the
marked nodes of T and T2 are the same. One query to P2 requires at most one query to P
with additional Oplog dq auxiliary operations.

Proof. For any node N P T which is not a leaf, we want to transform the subtree N plus its
children into a binary subtree in T . By making queries to the black box, we know the number
of children dpN q of N . We also know the i-th child of N for all 1 ď i ď dpN q. There is thus a
bijection fN between r|0, ¨ ¨ ¨ , dpN q ´ 1|s and the children of N . We define lN “ rlog2pdpN qqs.
For each node of the tree N , we encode the corresponding node in T2 in the same way.

For those nodes which are in the local binary sub-tree in T2 corresponding to the local
sub-tree N+its children, and which does not correspond to N or its children, we can encode
them as: EpN q|ppx1 P t0, 1u, ¨ ¨ ¨ , xi P t0, 1u, ˚, ¨ ¨ ¨ , ˚qq where EpN q is the encoding of the node
N , where i ď lN and where the number in base 10 corresponding to px1, ¨ ¨ ¨ , xi, 0, ¨ ¨ ¨ , 0q in
base 2 is smaller than dpN q´1. Note that in the representation in base 2 px1, ¨ ¨ ¨ , xi, 0, ¨ ¨ ¨ , 0q,
the heaviest bit is on the left.

Given an encoding of a node N2 in T2 which is in the local binary sub-tree in T2 corre-
sponding to the local sub-tree N plus its children in T , we can easily build a black box which

5.3. Quantum speed-up of Cylinder Pruning 75

(*,*)

(*,0)

(0,0) (1,0) (2,0)

(*,1)

(0,1) (1,1)

(*,2)

(*,*)

(*,*)|(0,*)

(*,0)

(*,0)|(0,*)

(0,0) (1,0)

(2,0)

(*,1)

(0,1) (2,1)

(*,2)

Figure 5.3: An example of the transformation in Theorem 5.8

gives the children of this node by using the function fN and the value dpN q. We omit the
details here. Depending on if the node N2 corresponds to a node in T or not, a query on the
node N2 requires a query on T or not. If N2 does not correspond to a node in T , we need
Oplogpdqq auxiliary operations on the extra encoding to see if its children correspond to nodes
in T . These operations can then be quantized using Corollary 2.2 with potentially additional
workspace of size at most polynomial of the initial memory space.

According to our construction, the leaves of both trees are identical.
We will now prove that: #T ď #T2 ď 2#T . The left-hand inequality is obvious. If a

node N of T is a leaf or has a single child, the subtree of N plus its child (in case that it
exists) will not change in T2. If N has at least two children, the subtree of N+its children
will be transformed into a binary subtree in T2. Assume that N has k ě 2 children, the
corresponding subtree in T2 has 2k´ 1 nodes. It has 2k´ 2 ă 2k nodes if we do not count the
root corrsponding to N itself. Thus the k children of N are transformed into 2k ´ 2 nodes in
T2 if k ě 2. By combining the previous two cases, we obtain that #T2 ď 2#T .

In the context of enumeration with pruning, instead of enumerating the whole set LX S,
we may only be interested in the ‘best’ vector in LX S, i.e. minimizing some distance. In
terms of tree, this means that given a tree T with marked leafs defined by a predicate P, we
want to find a marked leaf minimizing an integral function g which is defined on the marked
leaves of T . We know that LpT q “ LpT2q. g is thus also defined on the marked leaves of T2.
We denote by gV the predicate which returns true on a node N if and only if it is a marked
leaf and gpN q ď V . We first find a parameter R such that there is at least one marked leaf
N such that gpN q ď R. Then we decrease R by dichotomy using Theorem 2.9 with different
marking functions. We thus obtain FindMin1pT ,P, g, R, d, εq (Algorithm 5.4), which is a
general algorithm to find a leaf minimizing the function g with error probability ε, using the
binary tree T2.

Theorem 5.9. Let ε ą 0. Let T be a tree with its marked leaves defined by a predicate P.
Let d be an upper-bound on the degree of T . Let g be an integral function defined on the
marked leaves such that gpN q ď R has at least one solution over all of the marked leaves.
Then Algorithm 5.4 outputs N P T such that g takes its minimum on N among all of the

76 Chapter 5. Enumeration Algorithms for the Shortest Vector Problem

Algorithm 5.4 Finding a minimum: FindMin1pT ,P, g, R, d, εq
Input: A tree T with marked leaves defined by the predicate P. An integral function g

defined on the marked leaves of T . A parameter R, such that gpN q ď R has at least one
solution over all of the marked leaves. An upper-bound d of the number of children of a
node in T .

Output: A marked leaf N such that g takes its minimum on N among all the marked leaves
explored by the backtracking algorithm.

1: T2 Ð the corresponding binary tree of T .1
2: N Ð R, N 1 Ð 0, RoundÐ rlog2Rs, v Ð p0, ¨ ¨ ¨ , 0q
3: while N 1 ă N ´ 1 do
4: Call FindSolutionpT2, gtpN`N 1q{2s, n log d, ε{Roundq
5: if FindSolutionpT2, gtpN`N 1q{2s, n log d, ε{Roundq returns x then
6: v Ð x, N Ð tpN `N 1q{2s

7: else
8: N 1 Ð tpN `N 1q{2s

9: end if
10: end while
11: return v

marked leaves of T , with probability at least 1´ ε. It requires

Op
?
T pn log dq3{2 logpn log dq logprlog2Rs{εqrlog2Rsq

queries on T and on P, where T “ #T . Each query on T requires Oplog dq auxiliary operations.
The algorithm needs polypn log d, logRq qubits.

Proof. Correctness is trivial. Regarding the query complexity, there are in total Round “
rlog2Rs calls to FindSolution. According to Theorem 2.9, each call requires

Op
?
T pn log dq3{2 logpn log dq logpRound{εqq

queries on the local structure of T2 and on g. Thus according to Theorem 5.8, in total, we
need

Op
?
T pn log dq3{2 logpn log dq logprlog2Rs{εqrlog2Rsq

queries on the local structure of T and on g. Each query on T requires Oplog dq auxiliary
operations. For each call, we need polypn log dq qubits. In total, we need polypn log d, logRq
qubits.

If we know an upper-bound T on the number of nodes in the tree T , we can speed up
the algorithm by replacing FindSolution by ExistSolution in lines 4, 5: the new algorithm
FindMin2pT ,P, g, R, d, T, εq is given and analyzed in the followings.

Theorem 5.10. Let ε ą 0. Let T be a tree with its marked leaves defined by a predicate P
Let g be an integral function defined on the marked leaves such that gpN q ď R has at least one
solution over all of the marked leaves and an upper-bound d of the number of children of a

1The access to T2 is guaranteed by Theorem 5.8 via the access to T .

5.3. Quantum speed-up of Cylinder Pruning 77

Algorithm 5.5 Finding a minimum, given an upper-bound of the tree-size:
FindMin2pT ,P, g, R, d, T, εq
Input: A tree T with marked leaves defined by the predicate P. An integral function g

defined on the marked leaves of T . A parameter R, such that gpN q ď R has at least one
solution over all of the marked leaves. An upper-bound d of the number of children of a
node in T .

Output: A marked leaf N such that g takes its minimum on N among all the marked leaves
explored by the backtracking algorithm.

1: T2 Ð the corresponding binary tree of T
2: N Ð R, N 1 Ð 0
3: RoundÐ rlog2pRqs` 1
4: v Ð p0, ¨ ¨ ¨ , 0q
5: while N 1 ă N ´ 1 do
6: Call ExistSolutionpT2, T, gtpN`N 1q{2s, n logpdq, ε{Roundq
7: if ExistSolutionpT2, T, gtpN`N 1q{2s, n logpdq, ε{Roundq returns "marked node exists"

then
8: N Ð tpN `N 1q{2s

9: else
10: N 1 Ð tpN `N 1q{2s

11: end if
12: end while
13: Call FindSolutionpT2, gN , n logpdq, ε{Roundq
14: if FindSolutionpT2, gN , n logpdq, ε{Roundq returns x then
15: v Ð x
16: return v
17: else
18: return
19: end if

node in T . Then FindMin2pT ,P, g, R, d, T, εq outputs a marked leaf N , such that g takes its
minimum on N among all of the marked leaves of T , with probability at least 1´ ε. It requires

Op
a

Tn logpdq logpprlog2pRqsq{εqrlog2pRqs`
?
T pn logpdqq3{2 logpn logpdqq logpprlog2pRqsq{εqq

queries on the tree T and on g. Each query on T requires Oplogpdqq auxiliary operations. The
algorithm needs polypn logpdq, logpRqq qubits.

Proof. The correctness of the algorithm is easy to prove. We will compute the query com-
plexity. There are in total Round ´ 1 “ rlog2pRqs calls on ExistSolution and one call
on FindSolution. According to Theorem 2.8, for each call of ExistSolution, we need
Op

a

Tn logpdq logpRound{εqq queries on T2 and on g. According to Theorem 2.9, the call
on FindSolution requires Op

?
T pn logpdqq3{2 logpn logpdqq logpRound{εqq queries on the local

structure of the tree T2 and on g. In total, we need

Op
a

Tn logpdq logpRound{εq ˚ pRound´ 1qq `
?
T pn logpdqq3{2 logpn logpdqq logpRound{εqq

“ Op
a

Tn logpdq logpprlog2pRqs` 1q{εqrlog2pRqs`
?
T pn logpdqq3{2 logpn logpdqq logpprlog2pRqs` 1q{εqq

78 Chapter 5. Enumeration Algorithms for the Shortest Vector Problem

“ Op
a

Tn logpdq logpprlog2pRqsq{εqrlog2pRqs`
?
T pn logpdqq3{2 logpn logpdqq logpprlog2pRqsq{εqq

queries on T2 and on g. According to Theorem 5.8, in total, we need

Op
a

Tn logpdq logpprlog2pRqsq{εqrlog2pRqs`
?
T pn logpdqq3{2 logpn logpdqq logpprlog2pRqsq{εqq

queries on T and on g. Each query on T requires Oplogpdqq auxiliary operations.
Each call of ExistSolution and FindSolution requires polypn logpdqq qubits. In total

the algorithm needs polypn logpdq, logpRqq qubits.

5.3.2 Application to Cylinder Pruning
Lemma 5.11. Let pb1, ¨ ¨ ¨ ,bnq be an LLL-reduced basis. Let T be the backtracking tree
corresponding to the cylinder pruning algorithm for SVP with radius R ď }b1} and bounding
function f . Then the degree of the tree satisfies: dpT q ď 2n.

Proof. In T , the number of children of a node N of depth k can be upper-bounded by
dk “ 2fpkq }b1}

}b‹
n´k`1}

` 1 ď 2pn´kq{2`1` 1. The result follows from the fact that an LLL-reduced

basis satisfies: }b1}2

}b‹i }2
ď 2i´1 for all 1 ď i ď n.

Theorem 5.12. There is a quantum algorithm which, given ε ą 0, an LLL-reduced basis
B “ pb1, ¨ ¨ ¨ ,bnq of a lattice L in Zn, a radius R ď }b1} and a bounding function f :
t1, ¨ ¨ ¨ , nu Ñ r0, 1s, outputs with correctness probability ě 1´ ε:

1. a non-zero vector v in L X Pf pB,Rq, in time Op
?
Tn3 polyplogpnq, logp1{εqqqq, if L X

Pf pB,Rq Ę t0u.

2. all vectors in L X Pf pB,Rq, in time Op#pL X Pf pB,Rqq
?
Tn3 logpnq polyplogp#pL X

Pf pB,Rqq, logp1{εqqq.

3. a shortest non-zero vector v in LXPf pB,Rq, in time Op
?
Tn3β polyplogpnq, logp1{εq, logpβqqq,

if LX Pf pB,Rq Ę t0u. Here β is the bitsize of the vectors of B.

Here T is the total number of nodes in the enumeration tree T searched by the cylinder pruning
algorithm over Pf pB,Rq.

Proof. Let T be the enumeration tree searched by the cylinder pruning algorithm in which a
node of depth i, where 1 ď i ď n, is encoded as p˚, ¨ ¨ ¨ , ˚, xn´i`1, ¨ ¨ ¨ , ¨ ¨ ¨ , xnq and where the
root is encoded as p˚, ¨ ¨ ¨ , ˚q. Let T2 be the corresponding binary tree. Let P be a predicate
which returns true only on the nodes encoded as px1, ¨ ¨ ¨ , xnq in T2 (i.e. the leaves of T2, where
all the variables are assigned), such that }

řn
i“1 xibi}2 ď R2 and px1, ¨ ¨ ¨ , xnq ‰ p0, ¨ ¨ ¨ , 0q.

For 1, if L X Pf pB,Rq ‰ H, we apply FindSolutionpT2,P, n log d, εq. For 2, we find
all marked nodes by simply repeating the algorithm FindSolution, modifying the oracle
operator to strike out previously seen marked elements, which requires space complexity
Op#pLX Pf pB,Rqqq.

For 3, if LXPf pB,Rq ‰ H, we apply Theorem 5.9 to FindMin1pT ,P, } ¨ }2, R2, 2n` 1, εq.
In T2, the height of the tree can be upper-bounded by n log d “ Opn2q. We also have
Round “ Opβq. The time complexity is Op

?
Tn3β polyplogpnq, logp1{εq, logpβqqq.

5.4. Linear Optimization for Discrete Pruning 79

We can also apply the quantum tree algorithms to extreme pruning. If we run cylinder
pruning over m trees, we can combine these trees into a global one and apply the quantum
tree algorithms on it.

Theorem 5.13 (Quantum speed-up for SVP extreme pruning). There is a quantum algorithm
which, given ε ą 0, m LLL-reduced bases B1, ¨ ¨ ¨Bm of a lattice L in Zn,a radius R ď mini }b1,i}
where b1,i is the first vector of Bi and a bounding function f : t1, ¨ ¨ ¨ , nu Ñ r0, 1s, outputs
with correctness probability ě 1´ ε a shortest non-zero vector v in LX pYPf pBi, Rqq, in time
Op
?
Tn3β polyplogpnq, logp1{εq, logpβq, logpmqqq, if LXpYPf pBi, Rq Ę t0u. Here β is a bound

on the bitsize of vectors of Bi’s, T is the sum of number of nodes in the enumeration trees Ti
searched by cylinder pruning over Pf pBi, Rq for all 1 ď i ď m.

In the case of CVP with target vector u, we use the cylinder pruning algorithm with
radius R ď

a

řn
i“1 }b‹i }2{2 and bounding function f . The degree of the tree is now upper-

bounded by d “ max
a

řn
i“1 }b‹i }2{}b‹j} ` 1. We have log d “ Opβ ` nq where β is the

bitsize of the vectors of the basis B. We can obtain a similar theorem as Theorem 5.12 with
different overheads. For exemple for the first case, the time complexity becomes Op

?
Tn3{2pn`

βq3{2 polyplogpnq, logp1{εq, logpβqqqq.
For the extreme pruning for CVP the time complexity is

Op
?
Tn3{2pn` βq3{2β polyplogpnq, logp1{εq, logpβq, logpmqqq

5.4 Linear Optimization for Discrete Pruning
We saw in Section 5.2.6 how to compute or approximate the probability pptq that the cell of
the tag t contains the BDD solution. From Lemma 5.3, we know that for any integer m ą 0,
there are m tags which maximize pptq in the sense that any other tag must have a lower pptq.
To select optimal parameters for BDD discrete pruning, we want to find these m tags as fast
as possible, possibly in m operations and polynomial-space (by outputting the result as a
stream).

5.4.1 Reduction to Linear Optimization
We distinguish two cases:

• Selection based on expectation. Experiments performed in [AN17] show that in practice,
the m tags t which maximize volpCNptqXBnpRqq are essentially the ones which minimize
the expectation EtCNptqu where EtCu :“ ExPCp}x}2q over the uniform distribution.
Corollary 3 in [AN17] shows that this expectation is:

EtCNptqu “
n
ÿ

i“1

ˆ

t2i
4 `

ti
4 `

1
12

˙

}b‹i }2.

So we can assume that for a noise uniformly distributed over a ball (see Lemma 5.5),
the m tags t maximizing pptq are the tags minimizing EtCNptqu.

80 Chapter 5. Enumeration Algorithms for the Shortest Vector Problem

• Gaussian noise. If the noise distribution is the continuous multivariate Gaussian distri-
bution, Lemma 5.4 shows that pptq is given by (5.10). This implies that the m tags t
which maximize pptq are the ones which minimize ´ log pptq

In both cases, we want to find the m tags t P Nn which minimize an objective function g of
the form gptq “

řn
i“1 fpi, tiq, where fpi, tiq ě 0. The fact that the objective function can be

decomposed as a sum of individual positive functions in each coordinate allows us to view this
problem as a linear optimization. We will see that in the case that g has integral outputs, it is
possible to provably find the best m tags which minimize such a function g in essentially m
operations. If g is not integral, it is nevertheless possible to enumerate all solutions such that
gptq ď R where R is an input, in time linear in the number of solutions. A special case is the
problem of enumerating smooth numbers below a given number.

In practice, it is more efficient to rely on the expectation, because it is faster to evaluate.
Figure 5.4 shows how similar are the best tags with respect to one indicator compared to
another: to compare two sets A and B formed by the best M tags, the graph displays
#pAXBq{M . For instance, the top curve confirms the experimental result of [AN17] that the

Figure 5.4: Similarity between optimal sets of tags, depending on the objective function.

m tags t which maximize volpCNptq XBnpRqq are almost the same as the ones which minimize
the expectation EtCNptqu. The top second curve shows that the best tags that maximize the
LWE probability are very close to those minimizing the expectation. The bottom two curves
compare with the finite noise distribution arising in GGH challenges [GGH97]. In all cases,
at most 10% of the best tags are different, and more importantly, we report that the global
success probabilities are always very close, with a relative error typically ď 1%.

We conclude that in practice, the expectation is a very good indicator to select the best
tags for the distributions studied in Section 5.2.6.

5.4.2 Limits of Orthogonal Enumeration
Aono and Nguyen [AN17, Section 6] presented a heuristic method to solve this linear optimiza-
tion problem in the special case: gptq “ EtCNptqu “

řn
i“1

´

t2i
4 `

ti
4 `

1
12

¯

}b‹i }2, by noticing
that EtCNptqu was the squared distance between a target point and a special lattice with a
known orthogonal basis. This allowed to find all t P Nn such that EtCNptqu ď R for any R,
using a variant [AN17, Algorithm 6] of enumeration. And by using a binary search based
on an early-abort variant, it was also possible to find an R yielding slightly more than m
solutions.

5.4. Linear Optimization for Discrete Pruning 81

[AN17, Section 6] reported that this algorithm worked very well in practice: if ` is the
number of t P Nn such that EtCNptqu ď R, the number of nodes L of the enumeration algorithm
[AN17, Algorithm 6] seemed to be bounded by Op`nq, perhaps even `ˆn. This was in contrast
with the usual situation where the number of nodes of the enumeration tree is exponentially
larger than the number of solutions. However, no rigorous result could be proved in [AN17],
leaving it as an open problem to show the efficiency of [AN17, Algorithm 6].

Surprisingly, we solve this open problem of [AN17] in the negative. More precisely, we
show that there are cases where the number of nodes L of enumeration [AN17, Algorithm 6]
is exponentially larger than the number of solutions `. To see this, consider the orthogonal
lattice Zn with the canonical basis. Then: EtCNptqu “

řn
i“1

´

t2i
4 `

ti
4 `

1
12

¯

. But we have:

Lemma 5.14. Let R “ n
12 `

1
2 and n1 “ tn{10u. Then the number ` of t P Nn such that

řn
i“1

´

t2i
4 `

ti
4 `

1
12

¯

ď R is exactly n` 1. But the number `1 of pxn´n1`1, . . . , xnq P Nn
1 such

that
řn
i“n´n1`1

´

x2
i

4 `
xi
4 `

1
12

¯

ď R is ě 2n1.

Proof. For the choice R “ n
12 `

1
2 , we have

řn
i“1

´

t2i
4 `

ti
4 `

1
12

¯

ď R if and only if all the ti’s
are equal to zero, except at most one, which must be equal to one.

Furthermore, for any pxn´n1`1, . . . , xnq P t0, 1un
1 , we have:

n
ÿ

i“n´n1`1

ˆ

x2
i

4 `
xi
4 `

1
12

˙

ď n1
ˆ

1
2 `

1
12

˙

ď
n

10
7
12 “

7n
120 ă R.

It follows in this case that the number of nodes L of the enumeration algorithm [AN17,
Algorithm 6] for that R is at least exponential in n, though the number of solutions is linear
in n.

5.4.3 Solving Linear Optimization
We show that a slight modification of orthogonal enumeration can solve the more general
problem of linear optimization essentially optimally. This is based on two key ideas. The
first idea is that when solving linear optimization, we may assume without loss of gen-
erality that each function fpi, q is sorted by increasing value, with a starting value equal
to zero, which changes the tree: fpi, 0q “ 0 and fpi, jq ď fpi, j1q whenever j ď j1. In-
deed, it suffices to sort the values of fpi, q if necessary and subtract the minimal value:
however, note that for both the expectation EtCNptqu “

řn
i“1

´

t2i
4 `

ti
4 `

1
12

¯

}b‹i }2 and for

´
řn
i“1 log

´

erf
´

1?
2σ ¨

ti`1
2 ¨ }b‹i }

¯

´ erf
´

1?
2σ ¨

ti
2 ¨ }b

‹
i }

¯¯

, the values of fpi, q are already sorted.

For instance, t
2
i
4 `

ti
4 `

1
12 is an increasing function of ti.

The second idea is that we may assume to simplify that f has integral values, which allows
us to bound the running time of dichotomy. This is not directly true for the expectation
EtCNptqu “

řn
i“1

´

t2i
4 `

ti
4 `

1
12

¯

}b‹i }2. However, because we deal with integer lattices, the basis
B is integral, the }b‹i }2’s are rational numbers with denominator covolpLpb1, . . . ,bi´1qq

2, so we

82 Chapter 5. Enumeration Algorithms for the Shortest Vector Problem

can transform the expectation into an integer, by multiplying with a suitable polynomial-size
integer.

First, we present a slight modification Algorithm 5.6 of [AN17, Algorithm 6], whose running
time is provably essentially proportional to the number of solutions:

Theorem 5.15. Assume that f : t1, . . . , nuˆNÑ R satisfies fpi, 0q “ 0 and fpi, jq ě fpi, j1q
for all i and j ą j1. Given as input a number R ą 0, Algorithm 5.6 outputs all pv1, . . . , vnq P Nn
such that

řn
i“1 fpi, viq ď R using OpnN ` 1q arithmetic operations and ď p2n ´ 1qN ` 1

calls to the function fpq, where the number N is the number of pv1, . . . , vnq P Nn such that
řn
i“1 fpi, viq ď R.

Proof. To analyze the complexity of Algorithm 5.6, let nk denote the number of times we
enter Lines 3–18, depending on the value of k, which is ě 1 and ď n at each Line 3. Then
nk can be decomposed as nk “ ak ` bk, where ak (resp. bk) denotes the number of times we
enter Lines 5–10 (resp. Lines 12–17). Notice that an`1 “ 0 and a1 is exactly the number N
of pv1, . . . , vnq P Nn such that

řn
i“1 fpi, viq ď R. And if 1 ă i ď n, then ai is the number of

times that the variable k is decremented from i to i´ 1. Similarly, bn “ 1, and if 1 ď i ď n,
then bi is the number of times that the variable k is incremented from i to i` 1. By Line 1
(resp. 14), the initial (resp. final) value of k is n (resp. n`1). Therefore, for any 1 ď i ď n´1,
the number of times k is incremented from i to i` 1 must be equal to the number of times
k is decremented from i` 1 to i, in other words: bi “ ai`1. Thus, the total number of loop
iterations is:

n
ÿ

i“1
ni “

n
ÿ

i“1
pai ` biq “ N ` 1` 2

n
ÿ

i“2
ai.

Note that because fpi, 0q “ 0, any partial assignment
řn
i“i0

fpi, viq ď R can be extended to
a larger partial assignment

řn
i“1 fpi, viq ď R, which implies that a1 ě a2 ě . . . an. It follows

that the total number of loop iterations is:
n`1
ÿ

i“1
ni ď N ` 1` 2pn´ 1qN “ p2n´ 1qN ` 1.

For each loop iteration (Lines 3–18), the number of arithmetic operations performed is Op1q
and the number of calls to fpq is exactly one. It follows that the total number of arithmetic
operations is OpnN ` 1q and the number of calls to fpq is ď p2n´ 1qN ` 1.

We showed that the number of nodes in the search tree is linear in the number of solutions.
Next, we present Algorithm 5.7, which is a counting version of Algorithm 5.6:

Theorem 5.16. Assume that f : t1, . . . , nuˆNÑ R satisfies fpi, 0q “ 0 and fpi, jq ě fpi, j1q
for all i and j ą j1. Given as input two numbers R ą 0 and M ą 0, Algorithm 5.7 decides if
is N ěM or N ăM , where N is the number of pv1, . . . , vnq P Nn such that

řn
i“1 fpi, viq ď R.

Furthermore, if N ě M , the number of arithmetic operations is OpNq, and otherwise, the
number of arithmetic operations is OpnN ` 1q, and the algorithms outputs N .

Proof. Similarly to the proof of Theorem 5.15, let nk denote the number of times we enter
Lines 3–17, depending on the value of k, which is ě 1 and ď n at each Line 3. Then nk can
be decomposed as nk “ ak ` bk, where ak (resp. bk) denotes the number of times we enter
Lines 5–9 (resp. Lines 11–16).

5.5. Quantum Speed-up of Discrete Pruning 83

Let M be the number of pv1, . . . , vnq P Nn such that
řn
i“1 fpi, viq ď R. If M ď N , then

Algorithm 5.7 will perform the same operations as Algorithm 5.6 (except Line 6), so the cost
is OpnM ` 1q ď OpnN ` 1q arithmetic operations. Otherwise, M ą N , which means that the
while loop will stop after exactly N iterations, and the total number of operations is therefore
OpNq.

Our main result states that if the function f is integral, given any M , Algorithm 5.8 finds
the best N assignments in time M where M ď N ď pn` 1qM :

Theorem 5.17. Assume that f : t1, . . . , nuˆNÑ N satisfies fpi, 0q “ 0 and fpi, jq ă fpi, j1q

for all i and j ą j1. Assume that fpi, jq ď jOp1q2nOp1q. Given as input a number M ą 1,
Algorithm 5.8 outputs the N assignments pv1, . . . , vnq P Nn which minimize

řn
i“1 fpi, viq in

time Opnpn` 1qMq ` nOp1q `Oplog2Mq, where the number N satisfies: M ď N ď pn` 1qM .

Proof. We have the following invariant at the beginning of each loop iteration: the number of
pv1, . . . , vnq P Nn such that

řn
i“1 fpi, viq ď R0 is ăM , and the the number of pv1, . . . , vnq P Nn

such that
řn
i“1 fpi, viq ď R1 is ěM . Initially, this holds because the number of pv1, . . . , vnq P

Nn such that
řn
i“1 fpi, viq ď 0 is 1 and the number of pv1, . . . , vnq P Nn such that

řn
i“1 fpi, viq ď

řn
i“1 fpi, rM

1{nsq is ě pM1{nqn “ M . Furthermore, the loop preserves the invariant by
definition of the loop. Since the length R1 ´R0 decreases by a factor two, it follows that the
number of loop iterations is ď log2p

řn
i“1 fpi, rM

1{nsqq.
After the loop, we must have R0 “ R1 ´ 1. Let N1 (resp. N0) be the number of

pv1, . . . , vnq P Nn such that
řn
i“1 fpi, viq ď R1 (resp. R0) after the loop. By the invariant, we

know that N0 ăM ď N1. We claim that pN1´N0q ď nM , which implies that N1 ď pn`1qM .
Notice that N1 ´N0 is the number of pv1, . . . , vnq P Nn such that

řn
i“1 fpi, viq “ R1. For any

such assignment, one of the vi’s must be ě 1: if we decrement that vi, we get a cost ă R1, so
it must be ď R0 because R0 “ R1 ´ 1, which means that this assignment is counted by N0.
Since we have at most n possibilities for i, it follows that N1 ´N0 ď nM .

Furthermore, Algorithm 5.8 uses negligible space, except that the output is linear in M :
the best tags are actually output as a stream. If we sort the N tags, which requires space, we
could output exactly the best M tags.

5.5 Quantum Speed-up of Discrete Pruning
We present a quadratic quantum speed-up for discrete pruning, namely:

Theorem 5.18. There is a quantum algorithm which, given ε ą 0, a number M ą 0, and
an LLL-reduced basis B of a full-rank lattice L in Zn, outputs the shortest non-zero vector
in LX P in time Opn2?Mq polyplogpnq, logpMq, logp1{εq, βq with error probability ε. Here, β
denotes the bitsize of the vectors of B, P “

Ť

tPU CNptq where CN is the natural partition with
respect to B, U is formed by the N tags t minimizing EtCNptqu, for some M ď N ď 32n2M
with probability at least 1 ´ ε{2. If the algorithm is further given a target u P Zn, it also
outputs the shortest vector in pL´ uq X P .

By comparison, opening all the cells returned by Algorithm 5.8 of Section 5.4 does the
same in OpMq poly-time operations, except that the upper bound on N is slightly lower.

84 Chapter 5. Enumeration Algorithms for the Shortest Vector Problem

Algorithm 5.6 Enumeration of low-cost assignments
Input: A function f : t1, . . . , nu ˆNÑ Rě0 such that fpi, 0q “ 0 and fpi, jq ě fpi, j1q for all

i and j ą j1; a bound R ą 0.
Output: All pv1, . . . , vnq P Nn such that

řn
i“1 fpi, viq ď R.

1: v1 “ v2 “ ¨ ¨ ¨ “ vn “ 0 and ρn`1 “ 0 and k “ n
2: while true do
3: ρk “ ρk`1 ` fpk, vkq // cost of the tag p0, . . . , 0, vk, . . . , vnq
4: if ρk ď R then
5: if k “ 1 then
6: return pv1, . . . , vnq; (solution found)
7: vk Ð vk ` 1
8: else
9: k Ð k ´ 1 and vk Ð 0 // going down the tree

10: end if
11: else
12: k Ð k ` 1 // going up the tree
13: if k “ n` 1 then
14: exit (no more solutions)
15: else
16: vk Ð vk ` 1
17: end if
18: end if
19: end while

The proof of Theorem 5.18 has two parts: first, we show how to determine the best N cells
without computing them, for some N close to M , with high probability; then we find the
best candidate inside these N cells. Both rely on a tree interpretation. Algorithm 5.6 can
be seen as a backtracking algorithm on a tree T pRq, where each node can be encoded as
p˚, ¨ ¨ ¨ , ˚, vk, ¨ ¨ ¨ , vnq. The root is encoded as p˚, ¨ ¨ ¨ , ˚q. Given a node p˚, ¨ ¨ ¨ , ˚, vk, ¨ ¨ ¨ , vnq, if
k “ 1, then it is a leaf. If

řn
i“k fpi, viq ą R, then it is also a leaf. If

řn
i“k fpi, viq ď R, then its

children are p˚, ¨ ¨ ¨ , ˚, vk´1, vk, ¨ ¨ ¨ , vnq, where vk´1 can take all integer values between 0 and
ρvk,¨¨¨ ,vn . Here ρvk,¨¨¨ ,vn is the smallest integer such that fpi´ 1, ρvk,¨¨¨ ,vnq `

řn
i“k fpi, viq ą R.

In case of discrete pruning, f is quadratic. We can compute ρvk,¨¨¨ ,vn and build the black-box
on T pRq.

5.5.1 Determining the best cells implicitly
Given a number M ą 0, Algorithm 5.8 finds (in time essentially M) the best N vectors t P Nn

(for some N close to M) minimizing EtCNptqu “
řn
i“1

´

t2i
4 `

ti
4 `

1
12

¯

}b‹i }2 by minimizing
instead the function:

gpv1, ¨ ¨ ¨ , vnq “
n
ÿ

i“1
fpi, viq “

n
ÿ

i“1
vipvi ` 1q}b‹i }2 “

n
ÿ

i“1
αivipvi ` 1q.

This is done by finding a suitable radius R by dichotomy, based on logarithmically many calls
to Algorithm 5.7 until the number of solutions is close to M , and eventually enumerating the

5.5. Quantum Speed-up of Discrete Pruning 85

Algorithm 5.7 Counting low-cost assignments
Input: A function f : t1, . . . , nu ˆNÑ Rě0 such that fpi, 0q “ 0 and fpi, jq ě fpi, j1q for all

i and j ą j1; a bound R ą 0 and a number M ě 0.
Output: Decide if the number of pv1, . . . , vnq P Nn such that

řn
i“1 fpi, viq ď R is ě M or

ăM .
1: v1 “ v2 “ ¨ ¨ ¨ “ vn “ 0 and ρn`1 “ 0 and k “ n and m “ 0
2: while m ăM do
3: ρk “ ρk`1 ` fpk, vkq // cost of the tag p0, . . . , 0, vk, . . . , vnq
4: if ρk ď R then
5: if k “ 1 then
6: mÐ m` 1 and vk Ð vk ` 1 (one more solution)
7: else
8: k Ð k ´ 1 and vk Ð 0 // going down the tree
9: end if

10: else
11: k Ð k ` 1 // going up the tree
12: if k “ n` 1 then
13: return m ăM // no more solutions
14: else
15: vk Ð vk ` 1
16: end if
17: end if
18: end while
19: return m ěM

Algorithm 5.8 Enumeration of lowest-cost assignments
Input: A function f : t1, . . . , nu ˆNÑ Rě0 such that fpi, 0q “ 0 and fpi, jq ě fpi, j1q for all

i and j ą j1; a number M ą 0.
Output: Output the N assignments pv1, . . . , vnq P Nn that minimize

řn
i“1 fpi, viq, where

M ď N ď nM .
1: R0 Ð 0 and R1 Ð

řn
i“1 fpi, rM

1{nsq;
2: while R0 ă R1 ´ 1 do
3: Call Algorithm 5.7 with R “ tpR0 `R1q{2s and M
4: if number of solutions ěM then
5: R1 Ð R
6: else
7: R0 Ð R
8: end if
9: end while

10: Call Algorithm 5.6 with R1.

marked leaves of a search tree by Algorithm 5.6. Both Algorithm 5.6 and Algorithm 5.7 can
be viewed as algorithms exploring a tree T pRq depending on a radius R ą 0: Algorithm 5.7
decides if the number #SpT pRqq of marked leaves (i.e. the number of outputs returned by

86 Chapter 5. Enumeration Algorithms for the Shortest Vector Problem

Algorithm 5.6) is ě or ă than an input number; Algorithm 5.6 returns all the marked leaves.
This tree interpretation gives rise to Algorithm 5.9, which is our quantum analogue of

Algorithm 5.8 with the following differences: we are only interested in finding a suitable radius
R such that N “ #SpT pRqq is close to M up to a factor of 32n2, with correctness probability
at least 1´ ε{2, because enumerating all the marked leaves would prevent any quadratic speed
up. We replace Algorithm 5.7 by the quantum tree size estimation algorithm of [AK17]: this
gives a quadratic speed up, but approximation errors slightly worsens the upper bound on N .
The input pα1, ¨ ¨ ¨ , αnq of Algorithm 5.9 corresponds to p}b‹1}2, ¨ ¨ ¨ , }b‹n}2q, where pb1, ¨ ¨ ¨ ,bnq
is an integer basis. We know that p}b‹1}2, ¨ ¨ ¨ , }b‹n}2q P Qn, but by suitable multiplication
preserving polynomial sizes, we may assume that p}b‹1}2, ¨ ¨ ¨ , }b‹n}2q P Nn. The order between
the }b‹i }2’s doesn’t matter in our analysis. We can assume that }b‹1}2 ď ¨ ¨ ¨ ď }b‹n}2. We show

Algorithm 5.9 Computing implicitly the best cells quantumly
Input: ε,M ą 0 and pα1, ¨ ¨ ¨ , αnq P Nn with α1 ď ¨ ¨ ¨ ď αn such that the input f :

t1, ¨ ¨ ¨ , nu ˆ NÑ N of Algorithm 5.6 satisfies fpi, xq “ αixpx` 1q
Output: R such that M ď #SpT pRqq ď 32n2M with probability ě 1´ ε
1: r Ð rlog2p

řn
i“1 fpi, rp4nMq1{nsqqs and RÐ

řn
i“1 fpi, rp4nMq1{nsq and R0 Ð 0 and R1 Ð

R
2: while R1 ´R0 ą 1 do
3: Call TreeSizeEstimationpT2pRq, 16n2M, 1{2, εr{2, 2q
4: if the answer is "T2pRq contains more than 16n2M vertices" then
5: R1 Ð R and RÐ tpR0 `R1q{2s

6: else if the answer is "T2pRq contains T̂ vertices" with T̂ ă 3p2n´ 1qM then
7: R0 Ð R and RÐ tpR0 `R1q{2s

8: else
9: Return R

10: end if
11: end while
12: Return R0

that Algorithm 5.9 finds a radius R corresponding to the best M cells in approximately
?
M

quantum operations:

Theorem 5.19. The output R of Algorithm 5.9 satisfies M ď #SpT pRqq ď 32n2M with
probability ě 1´ ε{2. Algorithm 5.9 runs in quantum time

Opn2?M polyplogpnq, logpMq, logp1{εq, βqq

where β is the bitsize of the basis vectors pb1, ¨ ¨ ¨ ,bnq. The algorithm needs

Oppolypn, logpMq, logp1{εqqq

qubits.

In order to prove the theorem, we will need the two following lemmas:

Lemma 5.20. For all R P N, we have #T2pRq´2
2p2n´1q ď #SpT2pRqq ď #T2pRq. We also have

#T2pR` 1q ď 2n#T2pRq.

5.5. Quantum Speed-up of Discrete Pruning 87

Proof of Lemma 5.20. Under the transformation, the number of tags that we find in the tree
with the parameter R won’t change, i.e. #SpT pRqq “ #SpT2pRqq.

Since we have: #T pRq´1
2n´1 ď #SpT pRqq ď #T pRq and we also know: #T pRq ď #T2pRq ď

2#T pRq
We thus have #T2pRq´2

2p2n´1q ď #SpT2pRqq ď #T2pRq

Now we will prove the second inequality. If there exists p˚, ¨ ¨ ¨ , ˚, vk, ¨ ¨ ¨ , vnq P T pRq where
vk ‰ 0 such that

řn
j“k fpj, vjq “ R` 1, then p˚, ¨ ¨ ¨ , ˚, vk ` 1, ¨ ¨ ¨ , vnq P T pR` 1qzT pRq. And

for all i P r|1, k ´ 1|s, p˚, ¨ ¨ ¨ , ˚, vi P t0, 1u, 0, ¨ ¨ ¨ , 0, vk, ¨ ¨ ¨ , vnq P T pR` 1qzT pRq.
p˚, ¨ ¨ ¨ , ˚, vk ` 1, ¨ ¨ ¨ , vnq generates two nodes in T2pR` 1qzT2pRq.
Each p˚, ¨ ¨ ¨ , ˚, vi P t0, 1u, 0, ¨ ¨ ¨ , 0, vk, ¨ ¨ ¨ , vnq generates one node in T2pR` 1qzT2pRq.
On the other hand, a node in T2pR`1qzT2pRq can only be derived from a node p˚, ¨ ¨ ¨ , ˚, vk, ¨ ¨ ¨ , vnq P

T pRq (and thus from the equivalent node in T2pRq) such that
řn
j“k fpj, vjq “ R ` 1 and

vk ‰ 0, by using the above processus.
Therefore, #T2pR` 1q ď 2n#T2pRq.

Lemma 5.21. d can be upper-bounded by
řn
i“1 αi
α1

rp4nMq1{nsq.

Proof of Lemma 5.21. At the beginning,

R “
n
ÿ

i“1
fpi, rp4nMq1{nsq “ p

n
ÿ

i“1
αiqrp4nMq1{nsqprp4nMq1{nsq ` 1q

ă

n
ÿ

i“1
αirp4nMq1{nsqp

řn
i“1 αi
α1

rp4nMq1{nsqq ` 1q

“ fp1,
řn
i“1 αi
α1

rp4nMq1{nsqq “ gp

řn
i“1 αi
α1

rp4nMq1{nsqq, 0, ¨ ¨ ¨ , 0q

Since α1 ď ¨ ¨ ¨ ď αn, we also have: for all 1 ď j ď n,
R ă gp0, ¨ ¨ ¨ , 0,

řn
i“1 αi
α1

rp4nMq1{nsq, 0, ¨ ¨ ¨ , 0q where
řn
i“1 αi
α1

rp4nMq1{nsq is on the jth position.
Since R decreases during the execution of the algorithm, d can be upper-bounded by

řn
i“1 αi
α1

rp4nMq1{nsq.

Proof of Theorem 5.19. We will prove that the output R satisfies 2p2n ´ 1qM ď #T2pRq ď

32n2M with probability at least 1 ´ ε{2. Since we have #T pRq´2
2p2n´1q ď #SpT2pRqq ď #T2pRq,

this proves that M ď #SpT pRqq ď 32n2M with probability at least 1´ ε{2.
Since the algorithm will end after at most Round “ rlog2p

řn
i“1 fpi, rp4nMq1{nsqqs calls of

the tree size estimation algorithm with correctness probability at least
1´ ε{2prlog2p

řn
i“1 fpi, rp4nMq1{nsqqsq, by using the union bound, the correctness probability

of our algorithm is at least 1´ ε{2. Now we can assume that all the answers of the tree size
estimation algorithm are correct.

In the following we will omit the last four parameters in TreeSizeEstimation for the
clarity of the proof.

In case that the algorithm returns R inside the while loop, the output of the first
TreeSizeEstimationpT2pRqq is "T2pRq contains T̂ vertices" with
3p2n´ 1qM ď T̂ ď 16n2M . Since the tree size estimation is up to precision 1˘ 1{2, the real
tree size should be in the interval r3p2n´1qN

1`1{2 , 16n2M
1´1{2 s Ă r2p2n´ 1qM, 32n2M s.

88 Chapter 5. Enumeration Algorithms for the Shortest Vector Problem

In case that the algorithm returns R after the while loop, we have R1 “ R0 ` 1. The
estimation of TreeSizeEstimationpT pR1qq with the parameters as in the while loop is
"T pR1q contains more than 16n2M vertices". Since the precision parameter is 1{2, we have
#T2pR1q ě

16n2M
1`1{2 ą 8n2M .

The estimation of TreeSizeEstimationpT pR0qq with the parameters as in the while loop
is "T pR0q contains T̂ vertices" with T̂ ă r3p2n´ 1qM s. Since the precision parameter is 1{2,
we have #T2pR0q ď

3p2n´1qM
1´1{2 “ 6p2n´ 1qM .

By using Lemma 5.20, we know that for all R P N, #T pR` 1q ď 2n#T pRq.Thus, there
exists R ą 0 such that 2p2n´ 1qM ď #T2pRq ď 4np2n´ 1qM ă 8n2M . This R should be R0.

We proved that in each case, Algorithm 5.9 outputs R such that 2p2n´ 1qM ď #T pRq ď
32n2M . Therefore, R satisfies M ď #SpT pRqq ď 32n2M with probability at least 1´ ε/2.

The number of queries to the trees is
Op

a

n logpdq16n2M log2pRound{εq˚Roundq “ Opn2?M polyplogpnq, logpMq, logp1{εq, βqq. Since
each query needs Oplogp16n2Mqq “ polyplogpnq, logpMqq non-query transformations, the time
complexity of Algorithm 5.9 is Opn2?M polyplogpnq, logpMq, logp1{εq, βqq.

The algorithm needs Oppolypn, logpMq, logp1{εqqq qubits by using Theorem 2.12.

5.5.2 Finding the best lattice vector
We now know R such that the number N of pv1, ¨ ¨ ¨ , vnq P Nn which satisfies

řn
i“1 fpi, viq ď R

is in rM, 32n2M s with probability at least 1´ ε{2. All these solutions are leaves of the tree
T pRq and they form the set U of the best N tags minimizing t minimizing EtCNptqu. Let
P “

Ť

tPU CNptq where CN is the natural partition with respect to the input basis B. We would
like to find a shortest non-zero vector in L X P for the SVP setting, or the shortest vector
in pL ´ uq X P in the CVP setting, when we are further given target u P Zn. To do this,
we notice that it suffices to apply FindMin2 (in App), provided that the basis pb1, ¨ ¨ ¨ ,bnq
is LLL-reduced. More precisely, we call FindMin2pT pRq,P, h, }b1}

2, d, 32n2M, ε{2q. Here
P is the predicate which returns true on a node iff it is a leaf encoded as px1, ¨ ¨ ¨ , xnq such
that gpx1, ¨ ¨ ¨ , xnq “

řn
i“1 fpi, xiq ď R. hV px1, ¨ ¨ ¨ , xnq is the predicate which indicates if

the square of the norm of the lattice vector in the cell of tag px1, ¨ ¨ ¨ , xnq is ď V . The time
complexity is Opn2?M polyplogpnq, logpMq, logp1{εq, βqq.

Since the subroutine of determining the best cells and the one of finding a shortest non-zero
vector, both have an error probability ε{2, by union bound, the total error probability is ε.
We thus have proved Theorem 5.18.

5.5.3 The Case of Extreme Pruning
In this section, we explain how to tackle the extreme pruning case, where one wants to run
discrete pruning over many reduced bases. We only give a proof sketches since the main ideas
are the same as previously.

Given m LLL-reduced bases pB1, ¨ ¨ ¨ ,Bmq of the same integer lattice L of rank n, we define
for each basis Bi a function gi : Nn Ñ Q such that gipx1, ¨ ¨ ¨ , xnq “

řn
j“1 }b‹i,j}2xipxi ` 1q,

where pb‹i,1, ¨ ¨ ¨ ,b‹i,nq is the Gram-Schmidt orthogonalization of the basis Bi. Here, we want to
first find the polypnqM best cells with respect to all of the functions gi altogether, and then find
the shortest vector in these cells. Both steps have complexity Op

?
M polypn, logM, log 1{ε, βqq,

5.6. Impact 89

where ε is the total error probability and where β is the bitsize of the vectors of the input
bases.

Theorem 5.22. There is a quantum algorithm which, given ε ą 0, a number M ą 0, and m
LLL-reduced bases pB1, ¨ ¨ ¨ ,Bmq of an n-rank integer lattice L, outputs the shortest non-zero
vector in L X P in time Op

?
M polypn, logM, log 1{ε, βqq with error probability ε. Here, β

denotes the maximum bitsize of the vectors of all given bases, P “
Ť

pi,tqPU CNpi, tq where CNpi, ¨q
is the natural partition with respect to Bi, U is formed by the N tuples pi, tq P t1, ¨ ¨ ¨ ,muˆNn
minimizing giptq among all tuples, for some N “ polypnq¨M with probability at least 1´ε{2. If
the algorithm is further given a target u P Zn, it also outputs the shortest vector in pL´uqXP .

The main idea of the proof is the following. For each basis Bi, there is a backtracking
tree with respect to the function gi as we explained in the previous section. We put all these
trees together and obtain one single tree. We first apply the TreeSizeEstimation algorithm
several times to find a good common radius R for all functions gi by dichotomy, such that the
total number of good cells in all trees is polypnq ¨M . After that, we apply FindMin2 to find
the shortest vector among all these cells. Remark that in the previous section, we required
the function g to have integral values, and this was achieved by multiplying all }b‹i }2 by a
common denominator. Instead, we here want to keep the output rational, which is proved
sufficient by the following lemma:

Lemma 5.23. Given a basis pb1, ¨ ¨ ¨ ,bnq of an integer lattice L, g : Nn Ñ Q such that
gpx1, ¨ ¨ ¨ , xnq “

řn
i“1 }b‹i }2xipxi ` 1q, we denote T pRq the backtracking tree for finding

all solutions of gpx1, ¨ ¨ ¨ , xnq ď R, T2pRq the corresponding binary tree. For all R P R`,
#SpT2pR`δqq ď 2n#SpT2pRqq, where δ “ 1

śn
i“1 ∆i

and ∆i “ covolpb1, ¨ ¨ ¨ ,biq2 “
śi
j“1 }b‹i }2.

The proof of this lemma is the same as the proof of Lemma 5.20 by noticing that
śn
i“1 ∆i

is a common denominator of all }b‹i }2.
For each basis Bi, we define δi as in Lemma 5.23. In the dichotomy step, we stop when

the difference of the two terms is smaller than minjPt1,¨¨¨ ,mu δj . The other steps are the same
as in the previous section.

5.6 Impact
In this section, we compare the asymptotical complexity of quantum enumeration with extreme
cylinder pruning and quantum sieving. We stress that this is just a first step, since we omitted
the polynomial overhead factors and only use the asymptotic formula. Note that the polynomial
factors in quantum sieve have not been investigated either. Such factors play an important
role in security estimates and further studies will be necessary to get a full picture. If one is
interested in more precise estimates, such as the number of quantum gates, one would need to
assess the quantum cost of the algorithm of Montanaro [Mon15] and that of Ambainis and
Kokainis [AK17]. Furthermore, one needs to assess the explicit quantum circuit complexity of
the oracle which gives local access to the tree used in the enumeration. Another point which
is worth noticing is that quantum sieving algorithms use QRACM gates whereas quantum
enumeration with extreme cylinder pruning is only in the plain quantum circuit model.

90 Chapter 5. Enumeration Algorithms for the Shortest Vector Problem

The cost of cylinder pruning depends on the quality of the basis used. [CN11, AWHT16]
discussed two models of strongly reduced bases: the HKZ model which is closer to the state-
of-the-art, and the Rankin model which provides conservative bounds by anticipating progress
in lattice reduction. In Figure 5.5, the red and yellow curves show

?
#bases ˚N where N

is an upper bound cost, i.e., number of nodes of enumeration with extreme pruning with
probability 1{#bases. The upper bounds for HKZ/Rankin bases are computed by the method
of [ANSS18]. The dotted blue curve corresponds to the asymptotical best known quantum
sieving complexity without polynomial factor which is 20.265n.

Quantum enumeration with extreme pruning for solving the shortest vector problem would
be faster than quantum sieve up to higher dimensions than previously thought, around 300
if we assume that 1010 quasi-HKZ-bases can be obtained for a total cost similar to the total
cost of quantum enumeration on the same number of quasi-HKZ-bases, or beyond 400 if 1010

Rankin-bases can be used instead.

Figure 5.5: Q-sieve vs Q-enum: (Left) Using HKZ bases (Right) Using Rankin bases

In a recent work [ABLR20], using recent technical progress on speeding-up lattice enu-
meration in BKZ, ie, relaxing (the search radius of) enumeration and extended preprocessing
which preprocesses in a larger rank than the enumeration rank k, the authors provide a faster
BKZ algorithm using lattice enumeration which achieves the same root Hermite factor (RHF)
with respect to k2 as previous BKZ algorithms. Their updated extrapolation of the crossover
rank between a square-root cost estimate for quantum enumeration using our algorithm and
the Core-SVP cost estimate (20.265k) for quantum sieving is 547.

Furthermore, we note that our quantum speedup might actually be more than quadratic.
Indeed, the number T of enumeration nodes is a random variable: the average quantum
running time is Ep

?
T q, which is ď

a

EpT q and potentially much less (e.g. a log-normal
distribution). It would be useful to identify the distribution of T : it cannot be log-normal
for LLL bases (unlike what seems to be suggested in [YD17]), because it would violate the
provable running time 2Opn2q of enumeration with LLL bases. Indeed, in [YD17], the authors
showed that the complexity of enumeration on a random n-dimensional BKZk-reduced basis
should be of the shape

exppn2xpkq ` ypkq ˘ n1.5l ¨ zpkqq

except a fraction at most expp´l2{2q of random bases, for some constants xpkq, ypkq, zpkq
depending on k. However there seems to be a mistake, because Chebyshev’s inequality only
guarantees the result for a fraction at most 1´ 1{l2 of random bases. By taking l “ Op

?
nq,

2The RHF essentially caracterizes how well a lattice basis is reduced.

5.6. Impact 91

we obtain that the enumaration on LLL-reduced basis (k “ 2) has complexity 2Opn2q only for
a guaranteed fraction 1´ 1{Ωpnq of random basis.

Chapter6The Subset Sum Problem

The work in this chapter has been published at ASIACRYPT 2020 [BBSS20] and is a joint
work with Xavier Bonnetain, Rémi Bricout and André Schrottenloher.

6.1 Introduction
In this chapter, we study the subset-sum problem, also known as knapsack problem: given
n integers a “ pa1, . . . anq and a target integer S, find an n-bit vector e “ pe1, . . . enq P
t0, 1un such that e ¨ a “

ř

i eiai “ S. The density of the knapsack instance is defined as
d “ n{plog2 maxi aiq and, for a random instance a, it is related to the number of solutions
that one can expect. We focus on the case where d “ 1, where expectedly a single solution
exists. Instead of naively looking for the solution e via exhaustive search, in time 2n, Horowitz
and Sahni [HS74] proposed to use a meet-in-the-middle approach in 2n{2 time and memory.
The idea is to find a collision between two lists of 2n{2 subknapsacks, i.e. to merge these two
lists for a single solution. Schroeppel and Shamir [SS81] later improved this to a 4-list merge,
in which the memory complexity can be reduced down to 2n{4.

The Representation Technique. At EUROCRYPT 2010, Howgrave-Graham and Joux [HJ10]
(HGJ) proposed a heuristic algorithm solving random subset-sum instances in time rO

`

20.337n˘,
thereby breaking the 2n{2 bound. Their key idea was to represent the knapsack solution in
many different ways, as a sum of vectors in t0, 1un. This representation technique increases
the search space size, allowing to merge more lists, with new arbitrary constraints, thereby
allowing for a more time-efficient algorithm. The time complexity exponent is obtained by
numerical optimization of the list sizes and constraints, assuming that the individual elements
obtained in the merging steps are well-distributed. This is the standard heuristic of classical
and quantum subset-sum algorithms. Later, Becker, Coron and Joux [BCJ11] (BCJ) improved
the asymptotic runtime down to rO

`

20.291n˘ by allowing even more representations, with vectors
in t´1, 0, 1un.

The BCJ representation technique is not only a tool for subset-sums: it has been used
to speed up generic decoding algorithms, classically [MMT11, BJMM12, MO15] and quan-
tumly [KT17]. Therefore, the subset-sum problem serves as the simplest application of
representations, and improving our understanding of the classical and quantum algorithms
may have consequences on these other generic problems.

93

94 Chapter 6. The Subset Sum Problem

Quantum Algorithms for the Subset-Sum Problem. Cryptosystems based on hard
subset-sums are natural candidates for post-quantum cryptography, but to understand precisely
their security, we have to study the best generic algorithms for solving subset-sums. The first
quantum time speedup for this problem was obtained in [BJLM13], with a quantum time
rO
`

20.241n˘. The algorithm was based on the HGJ algorithm. Later on, [HM18] devised an
algorithm based on BCJ, running in time rO

`

20.226n˘. Both algorithms use the corresponding
classical merging structure, wrapped in a quantum walk on a Johnson graph, in the MNRS
quantum walk framework [MNRS11]. However, they suffer from two limitations.

First, both use the model of quantum memory with quantum random-access (QRAQM),
which is stronger than the standard quantum circuit model, as it allows fast lookups in
superposition of all the qubits in the circuit. The QRAQM model is used in most quantum
walk algorithms to date. With a more restrictive model, i.e. classical memory with quantum
random-access (QRACM), no quantum time speedup over BCJ was previously known. This
is not the case for some other hard problems in post-quantum cryptography, e.g. heuristic
lattice sieving for the Shortest Vector Problem, where the best quantum algorithms to date
require only QRACM [Laa15a].

Second, both use a conjecture (implicit in [BJLM13], made explicit in [HM18]) about
quantum walk updates. In short, the quantum walk maintains a data structure, that contains
a merging tree similar to HGJ (resp. BCJ), with lists of smaller size. A quantum walk step is
made of updates that change an element in the lowest-level lists and requires to modify the
upper levels accordingly, i.e. to track the partial collisions that must be removed or added.
In order to be efficient, the update needs to run in polynomial time. Moreover, the resulting
data structure shall be a function of the lowest-level list, and not depend on the path taken in
the walk. The conjecture states that it should be possible to guarantee sound updates without
impacting the time complexity exponent. However, it does not seem an easy task and the
current literature on subset-sums lacks further justification or workarounds.

Contributions. We improve classical and quantum subset-sum algorithms based on repre-
sentations. We write these algorithms as sequences of “merge-and-filter” operations, where
lists of subknapsacks are first merged with respect to an arbitrary constraint, then filtered
to remove the subknapsacks that cannot be part of a solution. In the classical setting, we
propose a more time-efficient subset-sum algorithm based on representations. In the quantum
setting, we introduce quantum filtering, which speeds up the filtering of representations with a
quantum search. We obtain the first quantum time speedup that is not based on quantum
walks and only requires the QRACM model. We also give an improved quantum walk based on
quantum filtering and we show how to partially overcome the quantum walk update heuristic,
by designing a new data structure for the vertices in the quantum walk. A detailed description
of our contributions is available in Section 1.1.4.

6.2 List Merging and Classical Subset-sum Algorithms
In this section, we remain in the classical realm. We first introduce the HGJ t0, 1u represen-
tation technique, then the BCJ extended t´1, 0, 1u representations and finally our extended
t´1, 0, 1, 2u representations and detail our improvements over BCJ. In doing so, we will
introduce the list filtering and merging technique that we use in the rest of this chapter.

6.2. List Merging and Classical Subset-sum Algorithms 95

Hereafter and in the rest of this chapter, all time and memory complexities, classical
and quantum, are exponential in n. We use neglpnq for any function that vanishes inverse-
exponentially in n. We often replace asymptotic exponential time and memory complexities
(e.g. rOp2αnq) by their exponents (e.g. α). We use capital letters (e.g. L) and corresponding
letters (e.g. `) to denote the same value, in log2 and relatively to n: ` “ log2pLq{n. The
problem we will solve is defined as follows:

Definition 6.1 (Random subset-sum instance of weight n{2). Let a be chosen uniformly at
random from pZN qn, where N » 2n. Let e be chosen uniformly at random1 from t0, 1un with
Hamming weight n{2. Let t “ a ¨ e pmod Nq. Then a, t is a random subset-sum instance. A
solution is a vector e1 such that a ¨ e1 “ t pmod Nq.

6.2.1 The HGJ algorithm
The representation technique of Howgrave-Graham and Joux [HJ10] consists in generalizing
the problem to look for knapsacks with specific distributions of “0s” and “1s”. The intuition is
that if we have two random knapsacks with a proportion β of “1s” then the sum will have
a proportion 2β of “1s”, unless some collisions occur, i.e. the two vectors have a “1” at the
same position. The final result must have a distribution β “ 1

2 of “1s” and the HGJ algorithm
will obtain the result recursively from 8 lists with a proportion β “ 1

8 of “1s”. At the same
time, the algorithm will not only add two solutions but also change the modulo constraint:
the final result must give t modulo N but we will typically obtain it from a vector giving s
modulo N 1 and another vector giving t´ s modulo N 1, where N{N 1 is well-chosen and s is
chosen at random. Because of collisions (and to avoid bad cases), it is necessary to generalize
the problem from “looking for one solution” to “looking for many solutions”. In summary,
during intermediate steps of the computations, the HGJ algorithm is solving the following
more general problem: given n and β, a modular constraint N 1 and a target s, find many e
with Hamming weight βn such that e ¨ a “ s mod N 1.

Definition 6.2 (Distributions of knapsacks (HGJ)). A knapsack or subknapsack is a vector
e P t0, 1un. The set of e with βn “1” and p1´ βqn “0” is denoted Dnrβs.

Note that we always add vectors over the integers, and thus, the sum of two vectors of
Dnr˚s may contain unwanted symbols 2 and is not necessarily a knapsack. In what follows,
we will assume that we can efficiently sample from Dnrβs for any β, see Section 6.2.5 for more
details. We will also need the following estimate on the number of knapsacks.

Property 6.3 (Size of knapsack sets). We have

1
n

log2 |D
nrβs| » hpβq

where hpxq “ ´x log2 x´ p1´ xq log2p1´ xq is the Hamming entropy.

1With the notations of this section, this is equivalent to sampling from from Dn
r0, 1{2, 0s.

96 Chapter 6. The Subset Sum Problem

Merging and filtering. In the algorithm, we repeatedly sample vectors with certain
distributions Dnr˚s and then combine them. Let D1 “ Dnrβ1s, D2 “ Dnrβ2s be two input
distributions and D “ Dnrβs a target. Given two lists L1 P D

|L1|
1 and L2 P D

|L2|
2 , we define:

• the merged list L “ L1 ’c L2 containing all vectors e “ e1 ` e2 such that: e1 P L1, e2 P

L2, pe1 ` e2q ¨ a “ s mod M , s ď M is an arbitrary integer and M « 2cn (we write
L1 ’c L2 because s is an arbitrary value, whose choice is without incidence on the
algorithm)

• the filtered list Lf “ pLXt0, 1unq Ď L, containing the vectors with the target distribution
of “0s” and “1s”.

In general, L is exponentially bigger than Lf and does not need to be written down, as vectors
can be filtered on the fly. The algorithms then repeat the merge-and-filter operation on
multiple levels, moving towards the distribution Dnr1{2s while increasing the bit-length of the
modular constraint, until we satisfy e ¨ a “ t mod 2n and obtain a solution. Note that this
merging-and-filtering view that we adopt, where the merged list is repeatedly sampled before
an element passes the filter, has some similarities with the ideas developed in the withdrawn
article [EM19].

The standard subset-sum heuristic assumes that vectors in Lf are drawn independently,
uniformly at random fromD. It simplifies the complexity analysis of both classical and quantum
algorithms studied in this paper. Note that this heuristic, which is backed by experiments,
actually leads to provable probabilistic algorithms in the classical setting (see [BCJ11, Theorem
2]). We adopt the version of [HM18].

Heuristic 6.4. If input vectors are uniformly distributed in D1 ˆD2, then the filtered pairs
are uniformly distributed in D (more precisely, among the subset of vectors in D satisfying the
modular condition).

Filtering Representations. We let ` “ p1{nq log2 |L|, and so on for `1, `2, `f . By Heuris-
tic 6.4, the average sizes of L1, L2, L and Lf are related by:

• ` “ `1 ` `2 ´ c

• `f “ `` pf, where pf is negative and 2pfn is the probability that a pair pe1, e2q, drawn
uniformly at random from D1 ˆD2, satisfies pe1 ` e2q P D.

In particular, the occurrence of collisions in Lf is a negligible phenomenon, unless `f approaches
(log2 |D|{nq ´ c, which is the maximum number of vectors in D with constraint c. For a
given random knapsack problem, with high probability, the size of any list built by sampling,
merging and filtering remains very close to its average (by a Chernoff bound and a union
bound on all lists).

Here, pf depends only on D1, D2 and D. Working with this filtering probability is especially
useful for writing down our algorithm in Section 6.4. The formula for t0, 1u representations
is given by the following lemma. Classically, the time complexity of the merge-and-filter
operation is related to the size of the merged list. See Lemma 6.6 for more details.

6.2. List Merging and Classical Subset-sum Algorithms 97

Lemma 6.5 (Filtering HGJ-style representations). Let e1 P D
nrαs and e2 P D

nrβs. The
probability that e1 ` e2 P D

nrα` βs is 2pf1pα,βqn, with binpω, αq “ hpα{ωqω and

pf1pα, βq “ binp1´ α, βq ´ hpβq “ binp1´ β, αq ´ hpαq

if α` β ď 1, and the probability is 0 otherwise.

Proof. The probability that a e1 ` e2 survives the filtering is:
ˆ

n´ αn

βn

˙

{

ˆ

n

βn

˙

“

ˆ

n´ βn

αn

˙

{

ˆ

n

αn

˙

.

Indeed, given a choice of αn bit positions among n, the other βn bit positions must be
compatible, hence chosen among the p1 ´ αqn remaining positions. By taking the log2, we
obtain the formula for the filtering probability.

Lemma 6.6 (Classical merging with filtering). Let L1 and L2 be two sorted lists stored in
classical memory with random access. In log2, relatively to n, and discarding logarithmic
factors, merging and filtering L1 and L2 costs a time maxpminp`1, `2q, `1` `2´ cq and memory
maxp`1, `2, `f q, assuming that we must store the filtered output list.

Proof. Assuming sorted lists, there are two symmetric ways to produce a stream of elements of
L1 ’c L2: we can go through the elements of L1, and for each one, find the matching elements
in L2 by dichotomy search (time `1 `maxp0, `2 ´ cq) or we can exchange the role of L1 and
L2. Although we do not need to store L1 ’c L2, we need to examine all its elements in order
to filter them.

HGJ algorithm. We are now ready to recall the algorithm of Howgrave-Graham and
Joux [HJ10], with the corrected time complexity pointed out in [BCJ11]. Recall that the basic
operation in HGJ is to merge two lists of subknapsacks with a constraint t on cn bits, that
is, from two lists L1 and L2, obtain the list L1 “ te1 ` e2, e1 P L1, e2 P L2, pe1 ` e2q ¨ a “ t
mod 2cnu. Furthermore, we are interested in the filtered list of such representations, in which
we remove duplicate representations and sums e “ e1` e2 where e is not a binary vector. The
length of the filtered list L determines how many representations will survive the constraint t.
In HGJ, all lists at a given level have the same size.

The algorithm builds a merging tree of lists of subknapsacks, with four levels, numbered
3 down to 0. Level j contains 2j lists. In total, 8 lists are merged together into one. This
process is illustrated in Figure 6.1.

L0, 1
Dnr12 s

. . .L1
0, c1

Dnr14 s

. . .L2
0, c2

Dnr18 s

L3
0

Dn{2r1{8s ˆ t0n{2u
L3

1
t0n{2u ˆDn{2r1{8s

Figure 6.1: The HGJ algorithm (duplicate lists are omitted)

98 Chapter 6. The Subset Sum Problem

Level 3. We build 8 lists denoted L3
0 . . . L

3
7. They contain all subknapsacks of weight n

16 on n
2

bits, either left or right:
"

L3
2i “ Dn{2r1{8s ˆ t0n{2u

L3
2i`1 “ t0n{2u ˆDn{2r1{8s

From Property 6.3, these level-3 lists have size `3 “ hp1{8q{2. As the positions set to 1
cannot interfere, these is no filtering when merging L3

2i and L3
2i`1.

Level 2. We merge the lists pairwise with a (random) constraint on c2n bits, and obtain 4
filtered lists. The size of the filtered lists plays a role in the memory complexity of the
algorithm, but the time complexity depends on the size of the unfiltered lists.

In practice, when we say “with a constraint on cjn bits”, we assume that given the
subset-sum objective t modulo 2n, random values rji such that

ř

i r
j
i “ t mod 2cjn are

selected at level j, and the rji have cjn bits only. Hence, at this step, we have selected 4
integers on c2n bits r1

0, r
1
1, r

1
2, r

1
3 such that r1

0 ` r
1
1 ` r

1
2 ` r

1
3 “ t mod 2c2n. The 4 level-2

lists L2
0, L

2
1, L

2
2, L

2
3 have size `2 “ php1{8q ´ c2q, they contain subknapsacks of weight n

8
on n bits.

Remark 6.7. The precise values of these ri are irrelevant, since they cancel out each other
in the end. They are selected at random during a run of the algorithm, and although
there could be “bad” values of them that affect significantly the computation, this is not
expected to happen.

Level 1. We merge the lists pairwise with pc1 ´ c2qn new bits of constraint, ensuring that
the constraint is compatible with the previous ones. We obtain two filtered lists L1

0, L
1
1,

containing subknapsacks of weight n{4. They have size:

`1 “ 2`2 ´ pc1 ´ c2q ` pf1p1{8, 1{8q

where pf1p1{8, 1{8q is given by Lemma 6.5.

Level 0. We find a solution to the subset-sum problem with the complete constraint on n bits.
This means that the list L0 must have expected length 2`0n “ 1 so `0 “ 0. Note that
there remains p1´ c1qn bits of constraint to satisfy, and the filtering term is similar as
before, so:

`0 “ 2`1 ´ p1´ c1q ` pf1p1{4, 1{4q .

By Lemma 6.6, the time complexity of this algorithm is determined by the sizes of the
unfiltered lists: maxp`3, 2`3 ´ c2, 2`2 ´ pc1 ´ c2q, 2`1 ´ p1´ c1qq. The memory complexity
depends on the sizes of the filtered lists: maxp`3, `2, `1q. By a numerical optimization, one
obtains a time exponent of 0.337n with the following parameters:

`1 “ 0.311, `2 “ 0.305, `3 “ 0.265
c1 “ 0.5, c2 “ 0.226

6.2. List Merging and Classical Subset-sum Algorithms 99

6.2.2 The BCJ Algorithm
The HGJ algorithm uses representations to increase artificially the search space. The algorithm
of Becker, Coron and Joux [BCJ11] improves the runtime exponent down to 0.291 by allowing
even more freedom in the representations, which can now contain “´1”. The “´1” have to
cancel out progressively, to ensure the validity of the final knapsack solution. We need to
extend our notion of distribution of knapsack to present this algorithm.

Definition 6.8 (Distributions of knapsacks (BCJ)). A knapsack or subknapsack is a vector
e P t´1, 0, 1, 2un. The set of e with αn “-1”, pα` βqn “1” and p1´ 2α´ βqn “0” is denoted
Dnrα, βs. This coincides with the notation Dnrα, βs from [HM18].

In what follows, we will again assume that we can efficiently sample from Dnrα, βs for
any α and β, see Section 6.2.5 for more details. We also need the following estimate on the
number of such representation

Property 6.9 (Size of knapsack sets). We have

1
n

log2 |D
nrα, βs| » gpα, α` βq

where gpx, yq “ ´x log2 x´ y log2 y ´ p1´ x´ yq log2p1´ x´ yq is the 2-way entropy.

The BCJ algorithm is also based on merging and filtering certain distributions Dnr˚, ˚s.
Let D1 “ Dnrα1, β1s, D2 “ Dnrα2, β2s be two input distributions and D “ Dnrα, βs a target.
Given two lists L1 P D

|L1|
1 and L2 P D

|L2|
2 , we denote by L “ L1 ’c L2 the merged list and

by Lf “ pLX t´1, 0, 1unq Ď L the filtered list. Note that the filtering is different from before
because “-1” is now an acceptable value. We let ` “ p1{nq log2 |L|, and so on for `1, `2, `f . We
assume that Heuristic 6.4 applies to this new representation and we obtain the same estimates
` “ `1 ` `2 ´ c and `f “ `` pf where pf is the filtering probability. In the following lemma we
compute the filtering probabilty by assuming only symmetric input distributions for simplicity.
Indeed, we only use symmetric input distributions in practice in the algorithms, since the
formula are already complicated in this case. Thus the following lemma is not more general
than Lemma 6.5.

Lemma 6.10 (Filtering BCJ-style representations). Let e1, e2 P D
nrα, βs and γ ď 2α. Then

the logarithm of the probability that e1 ` e2 P D
nrγ, 2βs is:

pf2pα, β, γq “ binpβ ` α, α´ γ{2q ` binpα, α´ γ{2q
` trinp1´ β ´ 2α, γ{2, β ` γ{2q ´ trinp1, β ` α, αq

where trinpω, α, βq “ gpα{ω, β{ωqω is the trinomial. Furthermore trinpω, α, βq » 1
n log2

`

ωn
αn,βn

˘

.

Proof. In order to estimate the success probability, we need to estimate the number of well-
formed representations, and how they can be decomposed. Given a fixed vector e1 P D

nrα, βs,
we count the number of compatible e2 such that xn positions with a -1 from e2 are cancelled
by a 1 from e1. As e1 ` e2 P D

nrγ, 2βs, there are
`

pβ`αqn
xn

˘`

αn
p2α´γ´xqnq

˘`

p1´β´2αqn
pα´xqn,pβ`γ´α`xqn

˘

such vectors.

100 Chapter 6. The Subset Sum Problem

Taking the logarithm and the standard approximations, its derivative is
log

´

β`α´x
x

2α´γ´x
γ´α`x

α´x
β`γ´α`x

¯

. This term is strictly decreasing for 0 ă x ă γ ´ α, and equals 0
for x “ α´γ{2. Hence, this is the maximum, which correspond to the balanced case. It is equal,
up to a polynomial loss, to the total number of compatible vectors. Hence, the log of the number
of compatible vectors is binpβ ` α, α´ γ{2q`binpα, α´ γ{2q` trinp1´ β ´ 2α, γ{2, β ` γ{2q.
As there are trinp1, β ` α, αq vectors in Dnrα, βs, the lemma holds.

The BCJ algorithm follows the same structure as the HGJ algorithm, represented in
Figure 6.1, but the parameters of the distributions are different and not immediately clear.
While the original construction had a complexity exponent of 0.291n, we notice that it is
possible to improve it slightly. We relax the constraints `j ` cj “ gpαj , 1{2j`1q enforced
in [BCJ11], as only the inequalities `j`cj ď gpαj , 1{2j`1q are necessary. This idea is implicitly
used in [BCDL19], in the context of syndrome decoding. When optimizing the parameters
under these new constraints, we bring the asymptotic time exponent down to 0.289n with the
following parameters:

α1 “ 0.0348, α2 “ 0.0317, α3 “ 0.0196
`1 “ 0.2286, `2 “ 0.2753, `3 “ 0.2891, `4 “ 0.2730
c1 “ 0.8074, c2 “ 0.5460, c3 “ 0.2568
p0 “ ´0.2647, p1 “ ´0.0605, p2 “ ´0.0138

We will use this improvement in the next section where we increase the representation
further.

6.2.3 Our Extended Representation
We now introduce our new t´1, 0, 1, 2u representation and detail our improvements our BCJ.
The introduction of a new symbol requires us to extend again our notion of distribution of
knapsacks.

Definition 6.11 (Distributions of knapsacks). A knapsack or subknapsack is a vector e P
t´1, 0, 1, 2un. The set of e with αn “-1”, pα ` β ´ 2γqn “1”, γn “2” and p1 ´ 2α ´ β ` γqn
“0” is denoted Dnrα, β, γs. If γ “ 0, we may omit the third parameter and it coincides with
Dnrα, βs.

In Section 6.2.5, we show how to efficiently sample classicaly and quantumly from
Dnrα, β, γs for any α, β and γ. We also need an the following estimate on the number
of such representations.

Property 6.12 (Size of knapsack sets). We have
1
n

log2 |D
nrα, β, γs| » fpα, α` β ´ 2γ, γq

where

fpx, y, zq “ ´x log2 x´ y log2 y ´ z log2 z ´ p1´ x´ y ´ zq log2p1´ x´ y ´ zq

is the 3-way entropy.

6.2. List Merging and Classical Subset-sum Algorithms 101

We extend the merging and filtering of lists to this new representation and we assume
that Heuristic 6.4 applies to this new representation. Since the filtering step includes one
more symbol, the filtering probability needs to be re-computed. This becomes much more
challenging than with the t´1, 0, 1u representation and we again focus only on symmetric
input distribution.

Lemma 6.13 (Filtering representations using “2”s). Let e1, e2 P D
nrα1, β, γ1s and α0, γ0 ě 0.

Let us define :
"

xmin “ maxp0, α1 ` β ´
1´α0`γ0

2 , γ1 ´ γ0{2q
xmax “ minpα1 ´ α0{2, α0{2` β1 ´ γ0, γ1q

. If xmin ď xmax, then the

logarithm of the probability that e1 ` e2 P D
nrα0, 2β, γ0s is at least:

pf3pα0, β, γ0, α1, γ1q “ max
xPrxmin,xmaxs

trinpα1, x, α0{2q`

trinpα1 ` β ´ 2γ1, γ0 ´ 2γ1 ` 2x, β ´ γ0 ´ x` α0{2q ` binpγ1, xq`

quadrinp1´ β ´ 2α1 ` γ1, γ1 ´ x, α0{2, β ´ γ0 ´ x` α0{2q´
quadrinp1, α1, α1 ` β ´ 2γ1, γ1q

where quadrinpω, α, β, γq “ fpα{ω, β{ω, γ{ωqω is the quadrinomial. Furthermore, quadrinpω, α, β, γq »
1
n log2

`

ωn
αn,βn,γn

˘

.

Proof. To avoid the explosion of the number of variables, we restrain ourselves to the symmetric
cases (for which there are as many 1s given by 0` 1 as 1s given by 1` 0, etc.) Given some
e1 P D

nrα1, β, γ1s, we compute the number of compatible e2 P D
nrα1, β, γ1s. These vectors

can be sorted according to the number xn of positions where a ´1 from e1 cancels out a 2
from e2. For e1 ` e2 to be in Dnrα0, 2β, γ0s, we must have :

• p´1q ` p0q|p0q ` p´1q : α0n{2 times

• p´1q ` p1q|p1q ` p´1q : pα1 ´ x´ α0{2qn times

• p´1q ` p2q|p2q ` p´1q : xn times

• p1q ` p0q|p0q ` p1q : pα0{2` β ´ γ0 ´ xqn times

• p2q ` p0q|p0q ` p2q : pγ1 ´ xqn times

• p1q ` p1q : pγ0 ´ 2γ1 ` 2xqn times

• p0q ` p0q : p1´ α0 ` γ0 ´ 2α1 ´ 2β ` 2xqn times (i.e. the remaining)

Thus, in e1 (which contains α1 “´1”s), α0n{2 of the “´1”s must match a “0”, pα1´x´α0{2qn
of the “´1”s must match a “1” and the remaining nx must match a “2”. Therefore, there are
`

α1n
α0n{2,xn

˘

possible choices for the coordinates of e2 matching the “´1”s of e1. Similarly, there
are

`

pα1`β´2γ1qn
pγ0´2γ1`2xqn,pβ´γ0´x`α0{2qn

˘

possibilities for the coordinates of e2 matching the “1”s,
`

γ1n
xn

˘

for the coordinates matching the “2”s, and
`

p1´β´2α1`γ1qn
pγ1´xqn,α0n{2,pβ´γ0´x`α0{2qn

˘

for the coordinates
matching the “0”s.

The total number of possibilities is :

102 Chapter 6. The Subset Sum Problem

ÿ

x

ˆ

α1n

α0n{2, xn

˙ˆ

pα1 ` β ´ 2γ1qn

pγ0 ´ 2γ1 ` 2xqn, pβ ´ γ0 ´ x` α0{2qn

˙

ˆ

γ1n

xn

˙ˆ

p1´ β ´ 2α1 ` γ1qn
pγ1 ´ xqn, α0n{2, pβ ´ γ0 ´ x` α0{2qn

˙

This quantity is defined only for xmin ď x ď xmax. If x is outside of these bounds, one of
these multinomials (at least) is zero and there is no compatible e2. As xn must be an integer,
there are only a linear number of possible choices for x. Therefore the number of all possible
e2 is given, up to a polynomial factor, by the number of e2s for the best x.

In order to obtain a probability, we divide the number of compatible e2 by
`

n
α1n,pα1`β´2γ1qn,γ1nq

˘

,
which is the size of Dnrα1, β, γ1s. We observe here that the logarithm of the probability that
e2 is compatible with e1 is exactly pf3pα0, β, γ0, α1, γ1q.

We only considered the symmetric cases, assuming that we can neglect the contribution of
the asymmetric cases. If we cannot, it means that we underestimated the probability for e1
and e2 to be compatible, and we could improve further the parameters by taking into account
the asymmetric cases as well.

The algorithm. We build a merging tree with five levels, numbered 4 down to 0. Level j
contains 2j lists. In total, 16 lists are merged together into one. It is represented in Figure 6.2.

L0, 1
Dnr0, 1

2 , 0s

. . .L1
0 , c1

Dnrα1,
1
4 , γ1s

. . .L2
0, c2

Dnrα2,
1
8 , γ2s

. . .L3
0, c3

Dnrα3,
1
16 , γ3s

L4
0

Dn{2rα3, 1{16, γ3s ˆ t0n{2u
L4

1
t0n{2u ˆDn{2rα3, 1{16, γ3s

Figure 6.2: Our improved algorithm (duplicate lists are omitted).

Level 4. We build 16 lists L4
0 . . . L

4
15. They contain complete distributions on n

2 bits, either
left or right, with n

32 `
α3n

2 ´ γ3n “1”, α3n
2 “-1” and γ3n

2 “2”:
"

L4
2i “ Dn{2rα3, 1{16, γ3s ˆ t0n{2u

L4
2i`1 “ t0n{2u ˆDn{2rα3, 1{16, γ3s

As before, this avoids filtering at the first level. These lists have size: `4 “ fpα3, 1{16`
α3 ´ 2γ3, γ3q{2.

Level 3. We merge into 8 lists L3
0 . . . L

3
7, with a constraint on c3 bits. As there is no filtering,

these lists have size: `3 “ fpα3, 1{16` α3 ´ 2γ3, γ3q ´ c3.

6.2. List Merging and Classical Subset-sum Algorithms 103

Level 2. We now merge and filter. We force a target distribution Dnrα2, 1{8, γ2s, with α2 and
γ2 to be optimized later. There is a first filtering probability p2 given by Lemma 6.13.
We have `2 “ 2`3 ´ pc2 ´ c3q ` p2.

Level 1. Similarly, we have: `1 “ 2`2 ´ pc1 ´ c2q ` p1.

Level 0. We have `0 “ 2`1 ´ p1´ c1q ` p0 “ 0, since the goal is to obtain one solution in the
list L0.

With these constraints, we find a time rO
`

20.2830n˘ (rounded upwards) with the following
parameters:

α1 “ 0.0340, α2 “ 0.0311, α3 “ 0.0202, γ1 “ 0.0041, γ2 “ 0.0006, γ3 “ 0.0001
c1 “ 0.8067, c2 “ 0.5509, c3 “ 0.2680, p0 “ ´0.2829, p1 “ ´0.0447, p2 “ ´0.0135
`1 “ 0.2382, `2 “ 0.2694, `3 “ 0.2829, `4 “ 0.2755

6.2.4 Correctness of the Algorithms
While the operation of merging and filtering is the same as in previous works, our complexity
analysis differs from [HJ10, BCJ11, BJLM13, HM18]. We enforce the constraint that the final
list contains a single solution, hence if it is of size 2n`0 , we constrain `0 “ 0. Next, we limit the
sizes of the lists so that they do not contain duplicate vectors: these are saturation constraints.
A list of size 2n`, of vectors sampled from a distribution D, with a constraint of cn bits, has
the constraint: ` ď 1

n log2 |D| ´ c. This says that there are not more than |D|{2cn vectors e
such that e ¨ a “ r pmod 2cnq for the (randomly chosen) arbitrary constraint r.

Previous works focus on the solution vector e and compute the number of representations
of e, that is, the number of ways it can be decomposed as a sum: e “ e1 ` . . .` et of vectors
satisfying the constraints on the distributions. Then, they compare this with the probability
that a given representation passes the arbitrary constraints imposed by the algorithm. As their
lists contains all the subknapsacks that fulfil the constraint, this really reflects the number of
duplicates, and it suffices to enforce that the number of representations is equal to the inverse
probability that a representation fulfils the constraint. For smaller lists, it suffices to add the
probability that a representation compatible with the constraint is indeed in the list.

The two approaches are strictly equivalent, as the probability that the sum of two sub-
knapsacks is valid is exactly the number of representations of the sum, divided by the number
of pairs of subknapsacks. Therefore the correctness of our algorithm follows from the analysis
from [HJ10, BCJ11, BJLM13, HM18].

6.2.5 Sampling from a distribution of knapsacks
Throughout this chapter, we assume that we can classically sample uniformly at random from
Dnrα, β, γs in time polypnq. Since αn, βn and γn will in general not be integers, we suppose
to have them rounded to the nearest integer. This comes from the following efficient bijection
between representations and integers.

It is well known that there exists a bijection between
“

0,
`

n
m

˘˘

and n-bit vectors of Hamming
weight m, and this bijection can be computed in polynomial time in n [Sch72]. In our case,

104 Chapter 6. The Subset Sum Problem

m “ βn and such vectors are subknapsacks from Dnr0, βs. If i1, . . . im are the bit-positions
of the m “1” in this vector, we map it to the m-tuple of integers: pi1, . . . imq, and define the
bijection as:

φ : pi1, . . . imq ÞÑ
ˆ

im ´ 1
m

˙

` . . .`

ˆ

i1 ´ 1
1

˙

where
`

i
j

˘

has supposedly been precomputed for all i ď n, j ď m. In order to compute the
inverse φ´1, we find for each j ď t the unique integer ij such that

`

ij´1
m

˘

ď x ď
`

ij
m

˘

. We can
generalize this to an arbitrary number of nonzero symbols (3 in our extended algorithm: “1”,
“-1” and “2”), that we denote 1, 2, . . . t. Let k1, . . . kt be the counts of each symbol in the vector
v. We map it to a tuple of tuples: pi11, . . . i1k1

q, . . ., pit1, . . . itktq where the first vector represents
the positions of the “1” among the n bit positions, the second vector represents the positions
of the “2” after having removed the “1”, and so on. Consequently, we have 0 ď i1j ď n ´ 1,
0 ď i2j ď n´ 1´ k1, etc.

Next, we map each of these t tuples individually to an integer, as was done above:
φjpij1, . . . i

j
kj
q “ xj where 0 ď xj ď

`n´k1...´kj´1
kj

˘

. Finally, we compute:

φpvq “ x1 `

ˆ

n

k1

˙

x2 `

ˆ

n

k1, k2

˙

x3 ` . . .`

ˆ

n

k1, . . . kt

˙

xt

“ x1 `

ˆ

n

k1

˙ˆ

x2 `

ˆ

n´ k1
k2

˙ˆ

x3 ` . . .`

ˆ

n´ k1 . . .´ kt´2
kt´1

˙

xt
˙

. . .

˙

.

By the bounds on the xj , we remark that 0 ď φpvq ď
`

n
k1,...kt

˘

´1. Furthermore, we observe
that one can easily retrieve the xj by successive euclidean divisions, and use the bijections φj
to finish the computation.

Lemma 6.14. Let n, k1, . . . kt be t ` 1 integers such that k1 ` . . . ` kt ď n. There exists a
quantum unitary, realized with polypnq gates, that on input a number j in

”

0,
`

n
k1,...kt

˘

¯

, writes
on its output register the j-th vector φ´1pjq P t0, . . . , tun having, for each 1 ď i ď t, exactly
ki occurrences of the symbol “i”. There exists another unitary which writes, on input v, the
integer value φpvq.

Using this unitary in combination with a Quantum Fourier Transform, we can efficiently
produce superpositions of subsets of Dnrα, β, γs, using polypnq quantum gates, by taking
arbitrary integer intervals. We can thus perform a quantum search among representations.

6.3 Previous Quantum Algorithms for Subset-sum
In this section, we recall previous quantum algorithms for subset-sum. As we consider all our
algorithms from the point of view of asymptotic complexities, and neglect polynomial factors
in n, a high-level overview is often enough, and we will use quantum building blocks (quantum
search and quantum walks) as black boxes.

6.3. Previous Quantum Algorithms for Subset-sum 105

6.3.1 Solving Subset-sum with Quantum Walks
In 2013, Bernstein, Jeffery, Lange and Meurer [BJLM13] constructed quantum subset sum
algorithms inspired by Schroeppel-Shamir [SS81] and HGJ [HJ10]. We briefly explain the idea
of their quantum walk for HGJ. The graph G that they consider is a product Johnson graph.
We recall formal definitions from [KT17].

Definition 6.15 (Johnson graph). A Johnson graph JpN,Rq is an undirected graph whose
vertices are the subsets of R elements among a set of size N , and there is an edge between
two vertices S and S1 iff |S X S1| “ R ´ 1, in other words, if S1 can be obtained from S by
replacing an element. Its spectral gap is given by δ “ N

RpN´Rq .

Theorem 6.16 (Cartesian product of Johnson graphs [KT17]). Let JmpN,Rq be defined as
the cartesian product of m Johnson graphs JpN,Rq, i.e., a vertex in JmpN,Rq is a tuple of
m subsets S1, . . . Sm and there is an edge between S1, . . . Sm and S11, . . . S1m iff all subsets are
equal at all indices except one index i, which satisfies |Si X S1i| “ R ´ 1. Then it has

`

N
R

˘m

vertices and its spectral gap is greater than 1
m

N
RpN´Rq .

In [BJLM13], a vertex contains a product of 8 sublists L130 Ă L3
0, . . . , L

13
7 Ă L3

7 of a smaller
size than the classical lists: ` ă `3. There is an edge between two vertices if we can transform
one into the other by replacing only one element in one of the sublists. The spectral gap of
such a graph is (in log2, relative to n) ´`.

In addition, each vertex has an internal data structure which reproduces the HGJ merging
tree, from level 3 to level 0. Since the initial lists are smaller, the list L0 is now of expected
size 8p`´ `3q (in log2, relative to n), i.e. the walk needs to run for 4p`3 ´ `q steps. Each step
requires `{2 updates.

In the Setup procedure, we simply start from all choices for the sublists and build the tree
by merging and filtering. Assuming that the merged lists have decreasing sizes, the setup time
is `. The vertex is marked if it contains a solution at level 0. Hence, checking if a vertex is
marked takes time C “ 1, but the update procedure needs to ensure the consistency of the
data structure. Indeed, when updating, we remove an element e from one of the lists L13i and
replace it by a e1 from L3

i . We then have to track all subknapsacks in the upper levels where
e intervened, to remove them, and to add the new collisions where e1 intervenes.

Assuming that the update can run in polypnq, an optimization with the new parameter `
yields an exponent 0.241. In [BJLM13], the parameters are such that on average, a subknapsack
intervenes only in a single sum at the next level. The authors propose to simply limit the
number of elements to be updated at each level, in order to guarantee a constant update time.

Quantum Walk Based on BCJ. In [HM18], Helm and May quantize, in the same way,
the BCJ algorithm. They add “-1” symbols and a new level in the merging tree data structure,
reaching a time exponent of 0.226. But they remark that this result depends on a conjecture,
or a heuristic, that was implicit in [BJLM13].

Heuristic 6.17 (Helm-May). In these quantum walk subset-sum algorithms, an update with
expected constant time U can be replaced by an update with exact time U without affecting the
runtime of the algorithm, up to a polynomial factor.

106 Chapter 6. The Subset Sum Problem

Indeed, it is easy to construct “bad” vertices and edges for which an exact update, i.e. the
complete reconstruction of the merging tree, will take exponential time: by adding a single
new subknapsack e, we find an exponential number of pairs e` e1 to include at the next level.
So we would like to update only a few elements among them. But in the MNRS framework,
the data structure of a vertex must depend solely on the vertex itself (i.e. on the lowest-level
lists in the merging tree). And if we do as proposed in [BJLM13], we add a dependency on
the path that leads to the vertex, and lose the consistency of the walk.

In a related context, the problem of “quantum search with variable times” was studied by
Ambainis [Amb10]. In a quantum search for some x such that fpxq “ 1, in a set of size N ,
if the time to evaluate f on x is always 1, then the search requires time O

`?
N
˘

. Ambainis
showed that if the elements have different evaluation times t1, . . . tN , then the search now
requires time rOp

a

t21 ` . . .` t
2
N q, the geometric mean of t1, . . . tN . As quantum search can be

seen as a particular type of quantum walk, this shows that Heuristic 6.17 is wrong in general,
as we can artificially create a gap between the geometric mean and expectation of the update
time U; but also, that it may be difficult to actually overcome. In this paper, we will obtain
different heuristic and non-heuristic times.

6.4 Quantum Asymmetric HGJ
In this section, we give the first quantum algorithm for the subset-sum problem, in the QRACM
model, with an asymptotic complexity smaller than BCJ.

6.4.1 Quantum Match-and-Filter
We open this section with some technical lemmas that replace the classical merge-and-filter
Lemma 6.6. In this section, we will consider a merging tree as in the HGJ algorithm, but this
tree will be built using quantum search. The following lemmas bound the expected time of
merge-and-filter and match-and-filter operations performed quantumly, in the QRACM model.
This will have consequences both in this section and in the next one.

First, we remark that we can use a much more simple data structure than the ones
in [Amb07, BJLM13]. In this data structure, we store pairs e, e ¨ a indexed by e ¨ a mod M
for some M » 2m.

Definition 6.18 (Unique modulus list). A unique modulus list is a qRAM data structure
LpMq that stores at most M entries pe, e ¨ aq, indexed by e ¨ a mod M , and supports the
following operations:

• Insertion: inserts the entry pe, e ¨ aq if the modulus is not already occupied;

• Deletion: deletes pe, e ¨ aq (not necessary in this section)

• Query in superposition: returns the superposition of all entries pe, e ¨ aq with some
modular condition on e ¨ a, e.g. e ¨ a “ t mod M 1 for some t and some modulus M 1.

Note that all of these operations, including the query in superposition of all the entries with
a given modulus, cost Op1q qRAM gates only. For the latter, we need only some Hadamard

6.4. Quantum Asymmetric HGJ 107

gates to prepare the adequate superposition of indices. Furthermore, the list remains sorted
by design.

Next, we write a lemma for quantum matching with filtering, in which one of the lists is
not written down. We start from a unitary that produces the uniform superposition of the
elements of a list L1, and we wrap it into an amplitude amplification, in order to obtain a
unitary that produces the uniform superposition of the elements of the merged-and-filtered
list.

Lemma 6.19 (Quantum matching with filtering). Let L2 be a list stored in QRACM (with
the unique modulus list data structure of Definition 6.18). Assume we are given a unitary U
that produces in time tL1 the uniform superposition of L1 “ x0, . . . x2m´1 where xi “ pei, ei ¨aq.
We merge L1 and L2 with a modular condition of cn bits and a filtering probability p. Let L
be the merged list and Lf the filtered list. Assume |Lf | ě 1. Then there exists a unitary U 1

producing the uniform superposition of Lf in time: O
´

tL1?
p maxp

a

2cn{|L2|, 1q
¯

.

Notice that this is also the time complexity to produce a single random element of Lf . If we
want to produce and store the whole list Lf , it suffices to multiply this complexity by the number

of elements in Lf (i.e. p|L1||L2|{2cn). We would obtain: O
ˆ

tL1
?
pmax

ˆ

|L1|
b

|L2|
2cn ,

|L1||L2|
2cn

˙˙

.

Proof. Since L2 is stored in a unique modulus list, all its elements have distinct moduli.
Note that the expected sizes of L and Lf follow from Heuristic 6.4. Although the number of
iterations of quantum search should depend on the real sizes of these lists, the concentration
around the average is so high (given by Chernoff bounds) that the error remains negligible if
we run the search with the expected number of iterations. We separate three cases.

• If |L2| ă 2cn, then we have no choice but to make a quantum search on elements of L1

that match the modular constraint and pass the filtering step, in time: O
´

tL1

b

2cn
L2p

¯

.

• If |L2| ą 2cn but |L2| ă 2cn{p, an element of L1 will always pass the modular constraint,
with more than one candidate, but in general all these candidates will be filtered out.
Given an element of L1, producing the superposition of these candidates is done in time
1, so finding the one that passes the filter, if there is one, takes time

a

|L2|{2cn. Next,
we wrap this in a quantum search to find the “good” elements of L1 (passing the two
conditions), with O

´

a

2cn{pL2

¯

iterations. The total time is:

O

ˆ
c

2cn
L2p

ˆ

´

a

|L2|{2cn ˆ tL1

¯

“
tL1
?
p

˙

.

• If |L2| ą 2cn{p, an element of L1 yields on average more than one filtered candidate.
Producing the superposition of the modular candidates is done in time Op1q thanks to
the data structure, then finding the superposition of filtered candidates requires 1{?p
iterations. The total time is: O

`

tL1{
?
p
˘

.

The total time in all cases is: O
´

tL1?
p maxp

a

2cn{|L2|, 1q
¯

. Note that classically, the coupon
collector problem would have added a polynomial factor, but this is not the case here thanks
to QRACM (Remark 2.5).

108 Chapter 6. The Subset Sum Problem

In the QRACM model, we have the following corollary for merging and filtering two lists
of equal size. This result will be helpful in Section 6.4.3 and 6.5.

Corollary 6.20. Consider two lists L1, L2 of size |L1| “ |L2| “ |L| exponential in n. We
merge L1 and L2 with a modular condition of cn bits, and filter with a probability p. Assume
that 2cn ă |L|. Then Lf can be written down in quantum time: O

´

?
p |L|

2

2cn
¯

.

Proof. We do a quantum search to find each element of Lf . We have tL1 “ Op1q since it is a
mere QRACM query, and we use Lemma 6.19.

6.4.2 Revisiting HGJ
We now introduce our new algorithm for subset-sum in the QRACM model.

Our starting point is the HGJ algorithm. Similarly to [NS20], we use a merging tree in
which the lists at a given level may have different sizes. Classically, this does not improve the
time complexity. However, quantumly, we will use quantum filtering. Since our algorithm does
not require to write data in superposition, only to read from classical registers with quantum
random access, we require only QRACM instead of QRAQM.

In the following, we consider that all lists, except L3
0, L

2
0, L

1
0, L

0, are built with classical
merges. The final list L0, containing (expectedly) a single element, and a branch leading
to it, are part of a nested quantum search. Each list L3

0, L
2
0, L

1
0, L

0 corresponds either to a
search space, the solutions of a search, or both. We represent this situation on Fig. 6.3. Our
procedure runs as follows:

1. (Classical step): build the intermediate lists L3
1, L

2
1, L

1
1 and store them using a unique

modulus list data structure (Definition 6.18).

2. (Quantum step): do a quantum search on L3
0. To test a vector e P L3

0:

• Find e3 P L
3
1 such that e` e3 passes the c2

0n-bit modular constraint (assume that
there is at most one such solution). There is no filtering here.
• Find e2 P L

2
1 such that pe` e3q ` e2 passes the additional pc1 ´ c2

0qn-bit constraint.
• If it also passes the filtering step, find e1 P L

1
1 such that pe ` e3 ` e2q ` e1 is a

solution to the knapsack problem (and passes the filter).

Structural constraints are imposed on the tree, in order to guarantee that there exists a
knapsack solution. The only difference between the quantum and classical settings is in the
optimization goal: the final time complexity.

Structural Constraints. We now introduce the variables and the structural constraints
that determine the shape of the tree in Fig. 6.3. The asymmetry happens both in the weights
at level 0 and at the constraints at level 1 and 2. We write `ji “ plog2 |L

j
i |q{n. With the lists

built classically, we expect a symmetry to be respected, so we have: `32 “ `33, `34 “ `35 “ `36 “ `37,
`22 “ `23. We also tweak the left-right split at level 0: lists from L3

2 to L3
7 have a standard

balanced left-right split; however, we introduce a parameter r that determines the proportion
of positions set to zero in list L3

0: in L3
0, the vectors weigh cnp1 ´ rq on a support of size

6.4. Quantum Asymmetric HGJ 109

L0

L1
1 with

constraint c1

L2
3 with

constraint c2
1

L3
7

a{2, n{2
L3

6
a{2, n{2

L2
2 with

constraint c2
1

L3
5

a{2, n{2
L3

4
a{2, n{2

L1
0 with

constraint c1

L2
1 with

constraint c2
0

L3
3

b{2, n{2
L3

2
b{2, n{2

L2
0 with

constraint c2
0

L3
1

cr,
nr

L3
0

cp1´ rq,
np1´ rq

Figure 6.3: Quantum HGJ algorithm. Dotted lists are search spaces (they are not stored).
Bold lists are stored in QRACM. In Section 6.4.3, L2

2 and L2
3 are also stored in QRACM.

np1 ´ rq, instead of cn{2 on a support of size n{2. In total we have c ` b ` 2a “ 1
2 , as the

weight of the solution is supposed to be exactly n{2.
Then we note that:

• The lists at level 3 have a maximal size depending on the corresponding weight of their
vectors:

`30 ď hpcqp1´ rq, `31 ď hpcqr, `32 “ `33 ď hpbq{2, `34 ď hpaq{2

• The lists at level 2 cannot contain more representations than the filtered list of all
subknapsacks of corresponding weight:

`20 ď hpcq ´ c2
0, `21 ď hpbq ´ c2

0, `22 “ `23 ď hpaq ´ c2
1

• Same at levels 1 and 0: `10 ď hpc` bq ´ c1, `11 ď hp2aq ´ c1

• The merging at level 2 is exact (there is no filtering):

`20 “ `30 ` `
3
1 ´ c

2
0, `21 “ `32 ` `

3
3 ´ c

2
0, `22 “ `34 ` `

3
5 ´ c

2
1, `23 “ `36 ` `

3
7 ´ c

2
1,

• At level 1, with a constraint c1 ě c2
0, c

2
1 that subsumes the previous ones:

`10 “ `20 ` `
2
1 ´ c

1 ` c2
0 ` pf1pb, cq , `11 “ `22 ` `

2
3 ´ c

1 ` c2
1 ` pf1pa, aq

• And finally at level 0: `0 “ 0 “ `10 ` `
1
1 ´ p1´ c1q ` pf1pb` c, 2aq

Classical Optimization. All the previous constraints depend on the problem, not on the
computation model. Now we can get to the time complexity in the classical setting, that we
want to minimize:

max
`

`34, `
3
2, `

3
1, `

3
2 ` `

3
3 ´ c

2
0, `

3
4 ` `

3
5 ´ c

2
1, `

2
2 ` `

2
3 ´ c

1 ` c2
1,

`30 `maxp`31 ´ c2
0, 0q `maxp`21 ´ c1 ` c2

0, 0q `maxppf1pb, cq ` `
1
1 ´ p1´ c1q, 0q

˘

.

The last term corresponds to the exhaustive search on `30. In order to keep the same freedom
as before, it is possible that an element of L3

0 matches against several elements of L3
1, all

110 Chapter 6. The Subset Sum Problem

of which yield a potential solution that has to be matched against L2
1, etc. Hence for each

element of L3
0, we find the expected maxp`31 ´ c2

0, 0q candidates matching the constraint c1
0.

For each of these candidates, we find the expected maxp`21 ´ c1 ` c2
0, 0q candidates matching

the constraint c1. For each of these candidates, if it passes the filter, we search for a collision
in L1

1; this explains the maxppf1pb, cq ` `
1
1 ´ p1´ c1q, 0q term. In the end, we check if the final

candidates pass the filter on the last level.
We verified that optimizing the classical time under our constraints gives the time complexity

of HGJ.

Quantum Optimization. The time complexity for producing the intermediate lists is
unchanged. The only difference is the way we find the element in L3

0 that will lead to a
solution, which is a nested sequence of quantum searches.

• We can produce the superposition of all elements in L2
0 in time

t2 “
1
2 maxpc2

0 ´ `
3
1, 0q

• By Lemma 6.19, we can produce the superposition of all elements in L1
0 in time

t2 ´
1
2pf1pb, cq `

1
2 max

`

c1 ´ c2
0 ´ `

2
1, 0

˘

• Finally, we expect that there are
`

`20 ` `
2
1 ´ c

1 ` c2
0 ` pf1pb, cq

˘

elements in L1
0, which

gives the number of iterations of the quantum search.

The time of this search is:
1
2
`

`10 `maxpc2
0 ´ `

3
1, 0q ´ pf1pb, cq `max

`

c1 ´ c2
0 ´ `

2
1, 0

˘˘

and the total time complexity is:

max
`

`34, `
3
2, `

3
1, `

3
2 ` `

3
3 ´ c

2
0, `

3
4 ` `

3
5 ´ c

2
1, `

2
2 ` `

2
3 ´ c

1 ` c2
1,

1
2
`

`10 `maxpc2
0 ´ `

3
1, 0q ´ pf1pb, cq `max

`

c1 ´ c2
0 ´ `

2
1, 0

˘˘˘

We obtain a quantum time complexity exponent of 0.2374 with this method (the detailed
parameters are given in Table 6.1).

6.4.3 Improvement via Quantum Filtering
Let us keep the tree structure of Figure 6.3 and its structural constraints. The final quantum
search step is already made efficient with respect to the filtering of representations, as we only
pay half of the filtering term pf1pb, cq. However, we can look towards the intermediate lists in
the tree, i.e. L3

1, L
2
1, L

1
1. The merging at the first level is exact: due to the left-right split, there

is no filtering of representations, hence the complexity is determined by the size of the output
list. However, the construction of L1

1 contains a filtering step. Thus, we can use Corollary 6.20
to produce the elements of L1

1 faster and reduce the time complexity from: `22 ` `23 ´ c1 ` c2
1

to: `22 ` `23 ´ c1 ` c2
1 `

1
2pf1pa, aq. By optimizing with this time complexity, we obtain a time

exponent 0.2356 (the detailed parameters are given in Table 6.1). The corresponding memory
is 0.2356 (given by the list L3

1).

6.4. Quantum Asymmetric HGJ 111

Table 6.1: Optimization results for the quantum asymmetric HGJ algorithm (in log2 and
relative to n), rounded to four digits. The time complexity is an upper bound.

Variant Time a b c `3
0 `3

1 `3
2 `3

4 `2
0 `1

0

Classical 0.3370 0.1249 0.11 0.1401 0.3026 0.2267 0.25 0.2598 0.3369 0.3114
Section 6.4.2 0.2374 0.0951 0.0951 0.2146 0.4621 0.2367 0.2267 0.2267 0.4746 0.4395
Section 6.4.3 0.2356 0.0969 0.0952 0.2110 0.4691 0.2356 0.2267 0.2296 0.4695 0.4368

Remark 6.21 (More improvements). We have tried increasing the tree depth or changing the
tree structure, but it does not seem to bring any improvement. In theory, we could allow
for more general representations involving “-1” and “2”. However, computing the filtering
probability, when merging two lists of subknapsacks in Dnrα, β, γs with different distributions
becomes much more technical. We managed to compute it for Dnrα, βs, but the number of
parameters was too high for our numerical optimizer, which failed to converge.

6.4.4 Quantum Time-Memory Tradeoff
In the original HGJ algorithm, the lists at level 3 contain full distributions Dn{2r0, 1{8s. By
reducing their sizes to a smaller exponential, one can still run the merging steps, but the final
list L0 is of expected size exponentially small in n. Hence, one must redo the tree many times.
This general time-memory tradeoff is outlined in [HJ10] and is also reminiscent of Schroeppel
and Shamir’s algorithm [SS81], which can actually be seen as repeating 2n{4 times a merge of
lists of size 2n{4, that yields 2´n{4 solutions on average.

Asymmetric Tradeoff. The tradeoff that we propose is adapted to the QRACM model.
It consists in increasing the asymmetry of the tree: we reduce the sizes of the intermediate
lists L3

1, L
2
1, L

1
1 in order to use less memory; this in turn increases the size of L3

0, L
2
0 and L1

0 in
order to ensure that a solution exists. We find that this tradeoff is close to the time-memory
product curve TM “ 2n{2, and actually slightly better (the optimal point when m “ 0.2356
has TM “ 20.4712n). This is shown on Figure 6.4. At m “ 0, we start at 2n{2, where L3

0
contains all vectors of Hamming weight n{2.

Fact 6.22. For any memory constraint m ď 0.2356 (in log2 and proportion of n), the optimal
time complexity in the quantum asymmetric HGJ algorithm of Section 6.4.3 is lower than
rO
`

2n{2´m
˘

.

Improving the QRACM usage. In trying to reduce the quantum or quantum-accessible
hardware used by our algorithm, it makes sense to draw a line between QRACM and classical
RAM, i.e. between the part of the memory that is actually accessed quantumly, and the
memory that is used only classically. We now try to enforce the constraint only on the QRACM,
using possibly more RAM. In this context, we cannot produce the list L1

1 via quantum filtering.
The memory constraint on lists L3

1, L
2
1, L

1
1 still holds; however, we can increase the size of lists

L3
4, L

3
5, L

3
6, L

3
7, L

2
2, L

2
3.

112 Chapter 6. The Subset Sum Problem

0 0.1 0.2 0.30.2

0.3

0.4

0.5

Memory constraint m (M “ 2mn)
T
im

e
t
(T
“

r O
`

2t
n
˘

) Optimization
of Sec. 6.4.3
t`m “ 1

2

Figure 6.4: Quantum time-memory tradeoff of the asymmetric HGJ algorithm

Fact 6.23. For any QRACM constraint m ď 0.2356, the optimal time complexity obtained by
using more RAM is always smaller than the best optimization of Section 6.4.3.

The difference remains only marginal, as can be seen in Table 6.2, but it shows a tradeoff
between quantum and classical resources.

Table 6.2: Time-memory tradeoffs (QRACM) for three variants of our asymmetric HGJ
algorithm, obtained by numerical optimization, and rounded upwards. The last variant uses
more classical RAM than the QRACM constraint.

QRACM Section 6.4.2 Section 6.4.3 With more RAM
bound Time Memory Time Memory Time Memory

0.0500 0.4433 0.0501 0.4433 0.0501 0.4412 0.0650
0.1000 0.3896 0.1000 0.3896 0.1000 0.3860 0.1259
0.1500 0.3348 0.1501 0.3348 0.1501 0.3301 0.1894
0.3000 0.2374 0.2373 0.2356 0.2356 0.2373 0.2373

6.5 New Algorithms Based on Quantum Walks
In this section, we improve the algorithm by Helm and May [HM18] based on BCJ and the
MNRS quantum walk framework. Our algorithm is a quantum walk on a product Johnson
graph, as in Section 6.3.1. There are two new ideas involved.

6.5.1 Asymmetric 5th level
In our new algorithm, we can afford one more level than BCJ. We then have a 6-level merging
tree, with levels numbered 5 down to 0. Lists at level i all have the same size `i, except at
level 5. Recall that the merging tree, and all its lists, is the additional data structure attached
to a node in the Johnson graph. In the original algorithm of [HM18], there are 5 levels, and a

6.5. New Algorithms Based on Quantum Walks 113

node is a collection of 16 lists, each list being a subset of size `4 among the gp1{16` α3, α3q{2
vectors having the right distribution.

In our new algorithm, at level 5, we separate the lists into “left” lists of size `l5 and “right”
lists of size `r5. The quantum walk will only be performed on the left lists, while the right
ones are full enumerations. Each list at level 4 is obtained by merging a “left” and a “right”
list. The left-right-split at level 5 is then asymmetric: vectors in one of the left lists Ll5 are
sampled from Dηnrα4, 1{32, γ4s ˆ t0p1´ηqnu and the right lists Lr5 contain all the vectors from
t0ηnuˆDp1´ηqnrα4, 1{32, γ4s. This yields a new constraint: `r5 “ fp1{32`α4´2γ4, α4, γ4qp1´ηq.

While this asymmetry does not bring any advantage classically, it helps in reducing the
update time. We enforce the constraint `r5 “ c4, so that for each element of Ll5, there is on
average one matching element in Lr5. So updating the list L4 at level 4 is done on average
time 1. Then we also have `4 “ `l5.

With this construction, `r5 and `l5 are actually unneeded parameters. We only need the
constraints c4p“ `r5q “ fp1{32`α4´2γ4, α4, γ4qp1´ηq and `4p“ `l5q ď fp1{32`α4´2γ, α4, γ4qη.
The total setup time is now:

S “ max
ˆ

c4, `4
loomoon

Lv. 5 and 4

, 2`4 ´ pc3 ´ c4q
loooooooomoooooooon

Level 3

, 2`3 ´ pc2 ´ c3q
loooooooomoooooooon

Level 2

, 2`2 ´ pc1 ´ c2q
loooooooomoooooooon

Level 1

,

`1 `maxp`1 ´ p1´ c1q, 0q
loooooooooooooooomoooooooooooooooon

Level 0

˙

and the expected update time for level 5 (inserting a new element in a list Ll5 at the bottom
of the tree) and at level 4 (inserting a new element in L4) is 1. The spectral gap of the graph
is δ “ ´`l5 and the proportion of marked vertices is ε “ ´`0.

Saturation Constraints. In the quantum walk, we have `0 ă 0, since we expect only some
proportion of the nodes to be marked (to contain a solution). This proportion is hence `0.
The saturation constraints are modified as follows:

`l5 ď
`0
16 ` fp

1
32 ` α4 ´ 2γ4, α4, γ4qη, `4 ď

`0
16 ` fp

1
32 ` α4 ´ 2γ4, α4, γ4q ´ c4

`3 ď
`0
8 ` fp

1
16 ` α3 ´ 2γ3, α3, γ3q ´ c3, `2 ď

`0
4 ` fp

1
8 ` α2 ´ 2γ2, α2, γ2q ´ c2

`1 ď
`0
2 ` fp1{4` α1 ´ 2γ1, α1, γ1q ´ c1

Indeed, the classical walk will go through a total of ´`0 trees before finding a solution.
Hence, it needs to go through ´`0{16 different lists at level 5 (and 4), which is why we need
to introduce `0 in the saturation constraint: there must be enough elements, not only in Ll5,
but in the whole search space that will be spanned by the walk. These constraints ensure the
existence of marked vertices in the walk.

6.5.2 Better Setup and Updates using quantum search
Along the lines of Lemma 6.19 and corollary 6.20, we now show how to use a quantum search
to speed up the Setup and Update steps in the quantum walk. As the structure of the graph is
unchanged, we still have ε “ ´`0 and a spectral gap δ “ ´`l5.

114 Chapter 6. The Subset Sum Problem

Setup. Let pi, p1 ď i ď 3q be the filtering probabilities at level i, i.e. the (logarithms of the)
probabilities that an element that satisfies the modulo condition resp. at level i also has the
desired distribution of 0s, 1s, ´1s and 2s, and appears in list Li. Notice that pi ď 0. Due to
the left-right split, there is no filtering at level 4.

We use quantum filtering (Corollary 6.20) to speed up the computation of lists at levels
3, 2 and 1 in the setup, reducing in general a time 2`´ c to 2`´ c` pf{2. It does not apply
for level 0, since L0 has a negative expected size. At this level, we will simply perform a
quantum search over L1. If there is too much constraint, i.e. p1´ c1q ą `1, then for a given
element in L1, there is on average less than one modular candidate. If p1´ c1q ă `1, there is
on average more than one (although less than one with the filter) and we have to do another
quantum search on them all. This is why the setup time at level 0, in full generality, becomes
p`1 `maxp`1 ´ p1´ c1q, 0qq{2. The setup time can thus be improved to:

S “ max
ˆ

c4, `4
loomoon

Lv. 5 and 4

, 2`4 ´ pc3 ´ c4q ` p3{2
looooooooooooomooooooooooooon

Level 3

, 2`3 ´ pc2 ´ c3q ` p2{2
looooooooooooomooooooooooooon

Level 2

,

2`2 ´ pc1 ´ c2q ` p1{2
looooooooooooomooooooooooooon

Level 1

, p`1 `maxp`1 ´ p1´ c1q, 0qq{2
loooooooooooooooooomoooooooooooooooooon

Level 0

˙

.

Update. Our update will also use a quantum search. First of all, recall that the updates of
levels 5 and 4 are performed in (expected) time 1. Having added an element in L4, we need to
update the upper level. There are on average `4 ´ pc3 ´ c4q candidates satisfying the modular
condition. To avoid a blowup in the time complexity, we forbid to have more than one element
inserted in L3 on average, which means: `4 ´ pc3 ´ c4q ` p3 ď 0 ðñ `3 ď `4. We then find
this element, if it exists, with a quantum search among the `4 ´ pc3 ´ c4q candidates.

Similarly, as at most one element is updated in L3, we can move on to the upper levels 2,
1 and 0 and use the same argument. We forbid to have more than one element inserted in L2
on average: `3 ´ pc2 ´ c3q ` p2 ď 0 ðñ `2 ď `3, and in L1: `1 ď `2. At level 0, a quantum
search may not be needed, hence a time maxp`1 ´ p1´ c1q, 0q{2. The expected update time
becomes:

U “ max
ˆ

0, p`4 ´ pc3 ´ c4qq{2
loooooooooomoooooooooon

Level 3

, p`3 ´ pc2 ´ c3qq{2
loooooooooomoooooooooon

Level 2

,

p`2 ´ pc1 ´ c2qq{2
loooooooooomoooooooooon

Level 1

, p`1 ´ p1´ c1qq{2
looooooooomooooooooon

Level 0

˙

.

6.5.3 Parameters
Using the following parameters, we found an algorithm that runs in time rO

`

20.2156n˘:

`0 “ ´0.1916, `1 “ 0.1996, `2 “ 0.2030, `3 “ 0.2110, `4p“ `l5q “ 0.2110
c1 “ 0.6190, c2 “ 0.4445, c3 “ 0.2506, c4p“ `r5q “ 0.0487
α1 “ 0.0176, α2 “ 0.0153, α3 “ 0.0131, α4 “ 0.0087

γ1 “ 0.0019, γ2 “ γ3 “ γ4 “ 0, η “ 0.8448

6.6. Mitigating Quantum Walk Heuristics for Subset-Sum 115

There are many different parameters that achieve the same time. The above set achieves
the lowest memory that we found, at rO

`

20.2110n˘. Note that time and memory complexities
are different in this quantum walk, contrary to previous works, since the update procedure
has now a (small) exponential cost.

Remark 6.24 (Time-memory tradeoffs). Quantum walks have a natural time-memory tradeoff
which consists in reducing the vertex size. Smaller vertices have a smaller chance of being
marked, and the walk goes on for a longer time. This is also applicable to our algorithms, but
requires a re-optimization with a memory constraint.

6.6 Mitigating Quantum Walk Heuristics for Subset-
Sum

In this section, we provide a modified quantum walk NEW-QW for any quantum walk
subset-sum algorithm QW, including [BJLM13, HM18] and ours, that will no longer rely on
Heuristic 6.17. In NEW-QW, the Johnson graph is the same, but the vertex data structure
and the update procedure are different (Section 6.6.2). It allows us to guarantee the update
time, at the expense of losing some marked vertices. In Section 6.6.4, we will show that most
marked vertices in QW remain marked.

6.6.1 New Data Structure for Storing Lists
The main requirement of the vertex data structure is to store lists of subknapsacks with
modular constraints in QRAQM. For each list, we will use two data structures. The first one is
the combination of a hash table and a skip list given in [Amb07] (abbreviated skip list below)
and the second one is a Bucket-modulus list data structure, adapted from Definition 6.18, that
we define below.

Hash Table and Skip List. We use the data structure of [Amb07] to store lists of entries
pe, e ¨ aq, sorted by knapsack value e ¨ a. The data structure for M entries, that we denote
SLpMq, uses rOpMq qRAM memory cells and supports the following operations: inserting an
entry in the list, deleting an entry from the list and producing the uniform superposition of
entries in the list. All these operations require time polylogpMq.

We resort to this data structure because the proposal of “radix trees” in [BJLM13] is less
detailed. It is defined relatively to a choice of polylogpMq “ polypnq hash functions selected
from a family of independent hash functions of the entries (we refer to [Amb07] for more
details). For a given choice of hash functions, the insertion or deletion operations can fail.
Thus, the data structure is equipped with a superposition of such choices. Instead of storing
SLpMq, we store:

ř

h|hy|SLhpMqy where SLh is the data structure flavored with the choice
of hash functions h. Insertions and deletions are performed depending on h. This allows for
a globally negligible error: if sufficiently many hash functions are used, the insertion and
deletion of any element add a global error vector of amplitude op2´nq regardless of the current
state of the data. The standard “hybrid argument” from [BBBV97] and [Amb07, Lemma 5]
can then be used in the context of an MNRS quantum walk.

116 Chapter 6. The Subset Sum Problem

Proposition 6.25 ([Amb07], Lemma 5, adapted). Consider an MNRS quantum walk with a
“perfect” (theoretical) update unitary U , managing data structures, and an “imperfect” update
unitary U 1 such that, for any basis state |xy:

U 1|xy “ U |xy ` |δxy

where |δxy is an error vector of amplitude bounded by op2´nq for any x. Then running the
walk with U 1 instead of U , after T steps, the final “imperfect” state |ψ1y deviates from the
“perfect” state |ψy by: }|ψ1y ´ |ψy} ď op2´nT q.

This holds as a general principle: in the update unitary, any perfect procedure can be
replaced by an imperfect one as long as its error is negligible (with respect to the total number
of updates) and data-independent. In contrast, the problem with Heuristic 6.17 is that a
generic constant-time update induces data-dependent errors (bad cases) that do not seem easy
to overcome.

Bucket-modulus List. Let B “ polypnq be a “bucket size” that will be chosen later. The
bucket-modulus list is a tool for making our update time data-independent: it limits the
number of vectors that can have a given modulus (where moduli are of the same order as the
list size).

Definition 6.26 (Bucket-modulus list). A Bucket-modulus list BLpB,Mq is a qRAM data
structure that stores at most B ˆM entries pe, e ¨ aq, with at most B entries sharing the
same modulus e ¨ a mod M . Thus, BLpB,Mq contains M “buckets”. Buckets are indexed by
moduli, and kept sorted. It supports the following operations:

• Insertion: insert pe, e ¨ aq. If the bucket at index e ¨ a mod M contains B elements,
empty the bucket. Otherwise, sort it using a simple sorting circuit.

• Deletion: remove an entry from the corresponding bucket.

• Query in superposition: similar as in Definition 6.18.

In our new quantum walks, each list will be stored in a skip list SLpMq associated with a
bucket-modulus BLpB,Mq. Each time we insert or delete an element from SLpMq, we update
the bucket-modulus list accordingly, according to the following rules.

Upon deletion of an element e in SLpMq, let e ¨ a “ T mod M , there are three cases for
BLpB,Mq:

• If |te1 P SLpMq, e1 ¨ a “ T u| ą B ` 1, then bucket number T in BLpB,Mq stays empty;

• If |te1 P SLpMq, e1 ¨ a “ T u| “ B ` 1, then removing e makes the number of elements
reach the bound B, so we add them all in the bucket at index T ;

• If |te1 P SLpMq, e1 ¨ a “ T u| ď B, then we remove e from its bucket.

Upon insertion of an element e in SLpMq, there are also three cases for BLpB,Mq:

• If |te1 P SLpMq, e1 ¨ a “ T u| “ B, then we empty the bucket at index T ;

• If |te1 P SLpMq, e1 ¨ a “ T u| ă B, then we add e to the bucket at index T in BLpB,Mq;

6.6. Mitigating Quantum Walk Heuristics for Subset-Sum 117

• If |te1 P SLpMq, e1 ¨ a “ T u| ą B, then the bucket is empty and remains empty.

In all cases, there are at most B insertions or deletions in a single bucket. Note that
BLpB,Mq Ď SLpMq but that some elements of SLpMq will be dropped.
Remark 6.27. The mapping from a skip list of size M (considered as perfect), which does not
“forget” any of its elements, to a corresponding bucket-modulus list with M buckets, which
forgets some of the previous elements, is deterministic. Given a skip list L, a corresponding
bucket modulus list L1 can be obtained by inserting all elements of L into an empty bucket
modulus list.

6.6.2 New Data Structure for Vertices
The algorithms that we consider use multiple levels of merging. However, we will focus only
on a single level. Our arguments can be generalized to any constant number of merges (with
an increase in the polynomial factors involved). Recall that the product Johnson graph on
which we run the quantum walk is unchanged, only the data structure is adapted.

In the following, we will consider the merging of two lists Ll and Lr of subknapsacks of
respective sizes `l and `r, with a modular constraint c and a filtering probability pf. The
merged list is denoted Lc “ Ll ’c Lr and the filtered list is denoted Lf . We assume that pairs
pe1, e2q in Lc must satisfy pe1 ` e2q ¨ a “ 0 mod 2cn (the generalization to any value modulo
any moduli is straightforward).

On the positive side, our new data structure can be updated, by design, with a fixed
time that is data-independent. On the negative side, we will not build the complete list Lf ,
and miss some of the solutions. As we drop a fraction of the vectors, some nodes that were
previously marked will potentially appear unmarked, but this fraction is polynomial at most.
We defer a formal proof of this fact to Section 6.6.4 and focus on the runtime.

We will focus on the case where `l “ `r and either Ll or Lr are updated, which happens at
all levels in our quantum walk, except the first level. Because there is no filtering at the first
level, it is actually much simpler to study with the same arguments. In previous quantum
walks, we had `c “ 2`´ c ď `, i.e. ` ď c; now we will have 2`´ c ě ` and 2`´ c` pf ď `.

Recall that our heuristic time complexity analysis assumes an update time p`´cq{2. Indeed,
the update of an element in Ll or Lr modifies on average p`´ cq elements in Ll ’c Lr, among
which we expect at most one filtered pair pe1, e2q (by the inequality 2`´ c` pf ď `). We find
this solution with a quantum search. In the following, we modify the data structure of vertices
in order to guarantee the best update time possible, up to additional polynomial factors. We
will see however that it does not reach p`´ cq{2. We now define our intermediate lists and
sublists, before giving the update procedure and its time complexity.

Definitions. Both lists Ll, Lr are of size M » 2`n. We store them in skip lists. In both Lr
and Ll, for each T ďM , we expect on average only one element e such that e ¨a “ T mod M .
We introduce two Bucket-modulus lists (Definition 6.26) L1lpB,Mq and L1rpB,Mq that we
will write as L1l and L1r for simplicity, indexed by e ¨ a mod M , with an arbitrary bound
B “ polypnq for the bucket sizes. They are attached to Ll and Lr as detailed in Section 6.6.1.
When an element in Ll or Lr is modified, they are modified accordingly.

In L1l and L1r, we consider the sublists of subknapsacks having the same modulo C mod 2cn,
and we denote by L1l,C and L1r,C these sublists. They can be easily considered separately since

118 Chapter 6. The Subset Sum Problem

the vectors are sorted by knapsack weight. By design of the bucket-modulus lists, L1l,C and
L1r,C both have size at most B2p`´cqn. We have:

L1l ’c L
1
r “

ď

0ďCď2cn´1
L1l,C ˆ L

1
r,C .

Next, we have a case disjunction to make. The most complicated case is when 2`´2c`pf ą 0,
that is, each product L1l,C ˆ L1r,C for a given C yields more than one filtered pair on average.
In that case, we define sublists L1l,C,i of L1l,C and sublists L1r,C,j of L1r,C using a new arbitrary
modular constraint, so that each of these sublists is of size ´pf{2 (at most). There are
`´ c` pf{2 sublists (exactly). The rationale of this cut is that a product L1l,C,i ˆ L1r,C,j for a
given i, j now yields on average a single filtered pair (or less). When 2`´ 2c` pf ď 0, we don’t
perform this last cut and consider the product L1l,C ˆ L1r,C immediately. By a slight abuse of
notation, we denote: pL1l,C,iˆL1r,C,jqf the set of filtered pairs from L1l,C,iˆL

1
r,C,j , and we have:

Lf “
ď

0ďCď2cn´1

ď

i,j

pL1l,C,i ˆ L
1
r,C,jq

f .

Algorithm 6.1 Update algorithm: given Ll, Lr of size `, we insert or delete an element in Ll
and update the filtered list Lf accordingly. We focus here on the case 2`´ 2c` pf ą 0.

Data: skip lists for Ll, Lr, Lf , bucket-modulus lists L1l, L1r
1: Ź The bucket-modulus list for Lf will be updated later

Input: an insertion / deletion instruction for Ll
Output: updates Ll, L1l, Lf accordingly

2: Insert or delete in Ll Ź only one element to update
3: Update the bucket-modulus structure L1l Ź at most B elements to update

each element e to insert / delete in L1l Ź B “ polypnq iterations
4: Select its corresponding sublist L1l,C,i
5: Let L2l,C,i “ L1l,C,i Y teu or L1l,C,izteu each sublist L1r,C,j Ź `´ c` pf{2 iterations
6: Estimate s “ |pL1l,C,i ˆ L1r,C,jqf | Ź time rO

`

B ˆ 2´pfn{2˘

7: Estimate s1 “ |pL2l,C,i ˆ L1r,C,jqf | Ź time rO
`

B ˆ 2´pfn{2˘

Ź In the case of an insertion, s1 ě s and s1 ď s for a deletion
8: if s ą B and s1 ď B

Ź The removal of e makes the number of filtered pairs acceptable
9: then Lf Ð Lf Y pL2l,C,i ˆ L

1
r,C,jq

f

10: if s ą B and s1 ą B
11: then do nothing
12: if s ď B and s1 ą B

Ź The insertion of e overflows the filtered pairs
13: then remove all pL1l,C,i ˆ L1r,C,jqf from Lf

14: if s ď B and s1 ď B
15: then update Lf with the (at most) B new or removed pairs

6.6. Mitigating Quantum Walk Heuristics for Subset-Sum 119

Algorithm and Complexity. Algorithm 6.1 details our update procedure. We now com-
pute its time complexity and explain why it remains data-independent. Recall that we want
to avoid the “bad cases” where an update goes on for too long: this is the case where an
update in Ll (or Lr) creates too many updates in Lf . In Algorithm 6.1, we avoid this by
deliberately limiting the number of elements that can be updated. We can see that Lf will be
smaller than the “perfect” one for two reasons: ‚ the bucket-modulus data structure loses some
vectors, since the buckets are dropped when they overflow. ‚ filtered pairs are lost. Indeed,
the algorithm ensures that in Lf , at most B solutions el ` er come from a cross-product
L1l,C,i ˆ L

1
r,C,j .

This makes the update procedure history-independent and its time complexity data-
independent. Indeed:

Lemma 6.28. The state of the data structures Ll, Lr, Lf after Algorithm 6.1 depends only
on Ll, Lr, Lf before and on the element that was inserted / deleted.

We omit a formal proof, as it follows from our definition of the bucket-modulus list and of
Algorithm 6.1.

Lemma 6.29. With a good choice of B, Algorithm 6.1 runs with a data-independent er-
ror in op2nq. The time complexity of Algorithm 6.1 is rO

`

2p`´cqn
˘

and an update modifies
rO
`

2maxp`´c`pf{2,0qn˘ elements in the filtered list Lf at the next level (respectively ` ´ c and
maxp`´ c` pf{2, 0q in log scale).

Proof. We check step by step the time complexity of Algorithm 6.1:

• Insertion and deletion from the skip list for Ll is done in polypnq, with a global error
that can be omitted.

• The bucket-modulus list L1l is updated in time OpBq “ polypnq without errors. At most
B elements must be inserted or removed.

• For each insertion or removal in L1l, we select the corresponding sublist L1l,C,i (or simply
L1l,C if 2`´ 2c` pf ď 0). We look at the sublists L1r,C,j and we estimate the number of
filtered pairs in the products L1l,C,iˆL1r,C,j (of size ´pf), checking whether it is smaller or
bigger than B. We explain in the next section (Section 6.6.3) how to do that reversibly
in time rO

`

B ˆ 2´pfn{2˘ (´pf{2 in log scale). There are `´ c` pf{2 classical iterations,
thus the total time is `´ c.

• Depending whether we have found more or less than B filtered pairs, we will have to
remove or to add all of them in Lf . This means that Bˆ2p`´c`pf{2qn insertion or deletion
instructions will be passed over to Lf .

There are two sources of data-independent errors: first, the skip list data structure (see
Section 6.6.1). Second, the procedure in the next section (Section 6.6.3). Both can be made
exponentially small at the price of a polynomial overhead. Note that B will be set in order to
get a sufficiently small probability of error (see the next section), and can be a global Opnq.
However, the polynomial overhead of our update unitary grows with the number of levels.

120 Chapter 6. The Subset Sum Problem

6.6.3 Estimating a Number of Solutions Reversibly
We give a reversible procedure that, given a search space X with good elements G Ď X, finds
whether |G| ą B using rOpBq independent Grover searches in X. This procedure uses a coupon
collector instead of quantum counting [BHT98], because B is considered to be a constant, and
we are interested in a good success probability rather than a quadratic speedup.

Lemma 6.30. Let X be a search space of exact size 2αn and G Ď X be a “good” subspace of
exact size unknown. There exists a quantum algorithm that given superposition access to X,
finds whether |G| ě B or not in time rO

`

B
?
X
˘

and with a negligible probability of error.

Proof. Although |G| is not known, we use the idea (see e.g. [BHMT02]) that we can perform
quantum searches with an approximate number of iterations and still obtain solutions with a
good probability.

More precisely, there exists a number t, depending on |G| (unknown) and |X| (known)
such that after t iterations, the state will be exactly the uniform superposition of G. This ideal
t is not an integer; it is between 1 and rπ4

a

|X|s (we assume that there is at least a solution,
otherwise we will also detect this). Since we don’t know t, we will instead approximate it by
a t1 such that t

2 ď t1 ď 3t
2 . If we perform t1 iterations with such a good t1, we will fall on a

state with a constant global amplitude b (roughly 1?
2) on elements of G. Thus, we perform

many different searches with different iteration numbers, ranging from 0, 1 to rπ4
a

|X|s, and
increasing exponentially. This ensures us that regardless of the value of t, one of these numbers
will be an approximation sufficient for us.

Since we want the algorithm to work with a global error negligible and independent of
|G|, we set c “ O

´

ln
a

|X|
¯

the number of different searches and perform c1B copies of each.
Thus, we have a total of cc1B independent states |ψiy for 1 ď i ď c. One of these packets
approximates the good t at best, but we don’t know which one. We see the state

Â

ip|ψiy
bcB

q

as a superposition over tuples of Xcc1B:
ÿ

x1,...xcc1B

αx1,...xcc1B |x1y . . . |xcc1By .

If |G| ă B, then this qubit is always 0: we can immediately uncompute the quantum
searches and we have obtained the result. If |G| ě B, then some of these tuples contain B
distinct solutions, but not all. We must ensure that their proportion is overwhelming, so that
after uncomputing, the algorithm actually adds an error vector of negligible amplitude. To do
that, we will only focus on the block of c1B states that corresponds to the good t, since for
them, we have a lower bound on the probability of finding a solution. The other states, that
we dismiss, can only improve our success in finding B distinct solutions. So we now focus on
c1B-tuples only.

Let us consider |G| “ B which is the worst case. First, we will look at the proportion of c1B-
tuples that contain p1´c2qc1bB solutions: this is the probability to succeed at least p1´c2qc1bB
times after c1B independent trials of probability b each, and it is higher than 1´expp´c2c1Bb{2q
by a Chernoff bound. Next, assuming that there are p1´ c2qc1bB independent solutions, we
check the probability that they span all the B distinct solutions that there are in total. This
is related to the coupon collector problem. The probability to miss at least a coupon among
B after cp3qB lnB trials is lower than B´cp3q`1. Thus, we may take cp3q “ Opnq, c2 “ 1

2 and
c1 “ Opnq for a total probability of failure in op2´nq.

6.6. Mitigating Quantum Walk Heuristics for Subset-Sum 121

6.6.4 Fraction of Marked Vertices
Now that we have computed the update time of NEW-QW, it remains to compute its
fraction εnew of marked vertices. We will show that εnew “ ε

´

1´ 1
polypnq

¯

with overwhelming
probability on the random subset-sum instance, where ε is the previous fraction in QW.

Consider a marked vertex in QW. There is a path in the data structure leading to the
solution, hence a constant number of subknapsacks e1, . . . , et such that the vertex will remain
marked if and only if none of them is “accidentally” discarded by our new data structure.
Thus, if G is the graph of the walk, we want to upper bound:

Pr
vPG

ˆ

v is marked in QW and
not marked in NEW-QW

˙

ď
ÿ

ei,1ďiďt
Pr
vPG

ˆ

ei P v in QW
ei R v in NEW-QW

˙

.

We focus on some level in the tree, on a list L of average size 2`n, and on a single vector
e0 that must appear in L. Subknapsacks in L are taken from B Ď Dnrα, β, γs. We study the
event that e0 is accidentally discarded from L. This can happen for two reasons:

• we have |te P L, e¨a “ e0¨a mod 2`nu| ą B: the vector is dropped at the bucket-modulus
level;

• at the next level, there are more than B pairs from some product of lists L1l,C,i ˆ L1r,C,j
to which the vector e0 belongs, that will pass the filter.

We remark the following to make our computations easier.

Fact 6.31. We can replace the L from our new data structure NEW-QW by a list of exact
size 2`n, which is a sublist from the list L in QW.

At successive levels, our new data structure discards more and more vectors. Hence, the
actual lists are smaller than in QW. However, removing a vector e from a list, if it does not
unmark the vertex, does not increase the probability of unmarking it at the next level, since e
does not belong to the unique solution.

Fact 6.32. When a vertex in NEW-QW is sampled uniformly at random, given a list L at
some merging level, we can assume that the elements of L are sampled uniformly at random
from their distribution B (with a modular constraint).

This fact translates Heuristic 6.4 as a global property of the Johnson graph. At the first
level, nodes contain lists of exponential size which are sampled without replacement. However,
when sampling with replacement, the probability of collisions is exponentially low. Thus, we
can replace PrvPG by PrvPG1 where G1 is a “completed” graph containing all lists sampled
uniformly at random with replacement. This adds only a negligible number of vertices and
does not impact the probability of being discarded.

Number of Vectors Having the Same Modulus. Let N » 2n and M be a divisor of N .
Given a particular e0 P B and a vector a P ZnN ,

For e P B, define Xepaq “

#

1 if e ¨ a “ e0 ¨ a pmod Mq

0 otherwise

122 Chapter 6. The Subset Sum Problem

We will first prove a result on the average number of vectors having the same modulus as
e0, then we will use this in a Chernoff bound. Define

Y pB, e0; aq “ cardte P B,a ¨ e “ a ¨ e0 pmod Mqu.

where M divides N » 2n. For simplicity, we write Y paq for Y pB, e0; aq in the following. We
are interested in Y paq as a random variable when a is drawn uniformly from ZnN .

Lemma 6.33. If |B| "M , then with probability 1´ neglpnq,

Y paq ď 2EarY paqs „ 2 ¨ |B|
M

(6.1)

Proof. Following [NSS01], for any z P C, define Epzq “ expp2πiz{Mq. It satisfies the identity

@k P N,
kM´1
ÿ

λ“0
Epλuq “

#

0 if u ‰ 0 pmod Mq

kM if u “ 0 pmod Mq
(6.2)

for any u P Z. We have

Y paq “
ÿ

ePB
Xepaq and Xepaq “

1
M

M´1
ÿ

λ“0
Epλa ¨ pe´ e0qq.

Therefore for any e ‰ e0,

EarXepaqs “
1
Nn

ÿ

aPZnN

1
M

M´1
ÿ

λ“0
Epλa ¨ pe´ e0qq

“
1
Nn

ÿ

aPZnN

1
M
`

1
Nn

ÿ

aPZnN

1
M

M´1
ÿ

λ“1
Epλa ¨ pe´ e0qq

“
1
M
`

1
MNn

M´1
ÿ

λ“1

ÿ

aPZnN

Epλa ¨ pe´ e0qq

“
1
M
`

1
MNn

M´1
ÿ

λ“1

n
ź

i“1

ÿ

aPZN

Epλapei ´ ei0qqq

“
1
M

(see below)

where in the last step, we used that if e ‰ e0, there exists i P r1, ns such that ei ‰ ei0, where
ei is the ith component of e and hence of the ith sum in the product is zero by (6.2) since
λ ‰ 0 pmod Mq. It follows by linearity that

EarY paqs “ EarXepaqs `
ÿ

ePBzte0u

EarXepaqs “ 1` |B| ´ 1
M

since e0 P B. Similarly for any e, f P Bzte0u,

EarXepaqXf paqs “
1
Nn

ÿ

aPZnN

˜

1
M

M´1
ÿ

λ“0
Epλa ¨ pe´ e0qq

¸˜

1
M

M´1
ÿ

µ“0
Epµa ¨ pf ´ e0qq

¸

6.6. Mitigating Quantum Walk Heuristics for Subset-Sum 123

“
1

M2Nn

ÿ

aPZnN

M´1
ÿ

λ“0

M´1
ÿ

µ“0
Epλa ¨ pe´ e0qqEpµa ¨ pf ´ e0qq

“
1

M2Nn

ÿ

aPZnN

M´1
ÿ

λ“0

M´1
ÿ

µ“0
Epa ¨ pλe` µf ´ pλ` µqe0qq

“
1

M2Nn

M´1
ÿ

λ“0

M´1
ÿ

µ“0

ÿ

aPZnN

Epa ¨ pλe` µf ´ pλ` µqe0qq

“
1
M2

M´1
ÿ

λ“0

M´1
ÿ

µ“0
1
“

λe` µf “ pλ` µqe0 mod M
‰

by (6.2). If λ “ 0 then the equation λe`µf “ pλ`µqe0 mod M becomes µf “ µe0 but since
f ‰ e0, the only solution is µ “ 0. A symmetric reasoning shows that if µ “ 0 then λ “ 0 is
the only solution. Hence, given e ‰ e0, we have

ÿ

fPBzte0u

EarXepaqXf paqs “
|B| ´ 1` |Fe|

M2

where

Fe “

pλ, µ, fq P t1, . . . ,M ´ 1u2 ˆ Bzte0u : λe` µf “ pλ` µqe0 mod M
(

.

We now claim that this set is not too large. Assume that pλ, µ, fq P Fe, recall that λ, µ ‰ 0
and since e ‰ e0 then there exists i such that ei ‰ ei0 so in particular λpei ´ ei0q “ µpf i ´ ei0q.
But recall that e, f , e0 P B Ď t´1, 0, 1, 2un hence ei ´ ei0 P t´3,´2,´1, 1, 2, 3u. It follows that
if we fix µ then there are at most 3 possible values2 for λ. We note in passing that the constant
3 is not magical: if we had B Ď t´a, . . . , aun then it be bounded by 2a. Now assume that
pλ, µ, fq, pλ, µ,gq P Fe with f ‰ g, then we must have

µpf ´ gq “ 0 mod M ñ f ´ g “ 0 mod M{µ

ñ Dk ‰ 0.@i,gi “ f i ` kM{µ

which is only possible if µ divides M . In particular, we must have M{µ ě 2, in other words
all coordinates of f and g are at least at distance 2. This is clearly impossible because
B Ď Dnrα, β, γs: the distribution of “-1”, “0”, “1”, “2” in one of f or g would be wrong. In
summary, we have that:

• for every µ, f , there are at most 3 possible values of λ such that pλ, µ, fq P Fe,

• for every λ and µ, there is at most one value of f such that pλ, µ, fq P Fe.

It follows that Fe has size at most 3M . Then by linearity,

EarY paq2s “
ÿ

e,fPB
EarXepaqXf paqs

2If we have, say, 3λ “ x pmod Mq then λ “ x{3 pmod M{3q, which is only possible if x and M are divisible
by 3, and then λ P tx{3, px`Mq{3, px` 2Mq{3u.

124 Chapter 6. The Subset Sum Problem

“
ÿ

fPB
EarXf paqs `

ÿ

ePBzte0u

EarXepaqs `
ÿ

e,fPzte0u

EarXepaqXf paqs

ď 2EarY paqs ´ 1` p|B| ´ 1q |B| ´ 1` 3M
M2

ď 1` 2 |B| ´ 1
M

` p|B| ´ 1q |B| ´ 1` 3M
M2

ď
M2 ` p|B| ´ 1qp|B| ´ 1` 5Mq

M2 .

Finally, we have

VapY paqq “ EarY paq2s ´ EarY paqs2

ď
M2 ` p|B| ´ 1qp|B| ´ 1` 5Mq ´ p|B| `M ´ 1q2

M2

“
3p|B| ´ 1qM

M2

“
3p|B| ´ 1q

M
.

Thus EarY paqs « VapY paqq when we look at their order of magnitude.
According to Tchebychev’s inequality,

Pr
a
r|Y paq ´ EarY paqs| ą EarY paqss ď

VapY paqq
EarY paqs2

“ neglpnq

which completes the proof.

Lemma 6.34. If |B| " M » |L|, then for a 1 ´ neglpnq proportion of a P ZnN , and with an
appropriate B “ Opnq:

Pr
e1,¨¨¨ ,e|L|„UnifpBq

»

–

|L|
ÿ

i“1
Xeipaq ă B ´ 1

fi

fl ą 1´ 1
polypnq (6.3)

Proof.

Pr
e1,¨¨¨ ,e|L|„UnifpBq

»

–

|L|
ÿ

i“1
Xeipaq ă B ´ 1

fi

fl

“

|B|
ÿ

y“1
Pr

e1,¨¨¨ ,e|L|„UnifpBq

»

–

|L|
ÿ

i“1
Xeipaq ă B ´ 1|Y paq “ y

fi

flPrrY paq “ ys

Under the condition of Y paq “ y, for all i P r1, |L|s, Xeipaq can be seen as a random
variable following Berp y

|B|q, since eis’ are randomly chosen from B. Here Berppq is a Bernoulli
distribution of parameter p.

6.6. Mitigating Quantum Walk Heuristics for Subset-Sum 125

Using equation (6.1), for a 1´ neglpnq portion of a P ZnN , we have

Pr
e1,¨¨¨ ,e|L|„UnifpBq

»

–

|L|
ÿ

i“1
Xeipaq ă B ´ 1

fi

fl

ą

2¨ |B|
M
ÿ

y“1
Pr

e1,¨¨¨ ,e|L|„UnifpBq

»

–

|L|
ÿ

i“1
Xeipaq ă B ´ 1|Y paq “ y

fi

flPrrY paq “ ys

“ p1´ neglpnqq
2¨ |B|
M
ÿ

y“1
Pr

e1,¨¨¨ ,e|L|„UnifpBq

»

–

|L|
ÿ

i“1
Xeipaq ă B ´ 1|Y paq “ y

fi

fl

ą p1´ neglpnqq Pr
e1,¨¨¨ ,e|L|„UnifpBq

»

–

|L|
ÿ

i“1
Xeipaq ă B ´ 1|Y paq “ 2 ¨ |B|

M

fi

fl

“ p1´ neglpnqq Pr
Xei„Berp2¨ |B|

M
¨ 1
|B| q“Berp 2

M
q

»

–

|L|
ÿ

i“1
Xeipaq ă B ´ 1

fi

fl

Chernoff’s inequality gives that for any δ ě 1:

Pr

»

–

|L|
ÿ

i“1
Xeipaq ě p1` δq

2|L|
M

fi

fl ď e´
δ
3

2|L|
M .

Hence, when M “ |L|, by taking B linear in n, we obtain that the probability of being
unmarked due to this e0 is less than 1

polypnq .

For the number of filtered pairs, we use the fact that the vectors at each level are sampled
uniformly at random from their distribution. If this is the case, then a Chernoff bound (similar
to the proof of Lemma 6.34) limits the deviation of the number of filtered pairs in L1l,C,iˆL1r,C,j
from its expectation (which is 1 by construction): the probability that there are more than
B ` 1 pairs is smaller than e´pB`1q{3. By taking a sufficiently big B “ Opnq, we can take a
union bound over all products of lists L1l,C,i ˆ L1r,C,j in which e0 intervenes. We also take a
union bound over the intermediate subknapsacks that we are considering. The loss of vertices
remains inverse polynomial.

6.6.5 Time Complexities without Heuristic 2
Previous quantum subset-sum algorithms [BJLM13, HM18] have the same time complexities
without Heuristic 6.17, as they fall in parameter ranges where the bucket-modulus data
structure is enough. However, this is not the case of our new quantum walk. We keep the
same set of constraints and optimize with a new update time. Although using the extended
t´1, 0, 1, 2u representations brings an improvement, neither do the fifth level, nor the left-right
split. This simplifies our constraints. Let ymaxp¨q “ maxp¨, 0q. The guaranteed update time
becomes:

126 Chapter 6. The Subset Sum Problem

U “ ymax
ˆ

`3 ´ pc2 ´ c3q
looooooomooooooon

Level 2

, ymaxp`3 ´ pc2 ´ c3q `
p2
2 q

looooooooooooooomooooooooooooooon

Number of elements to update at level 1

`ymaxp`2 ´ pc1 ´ c2qq,

1
2

´

ymax
´

`3´pc2´c3q`
p2
2

¯

` ymax
´

`2´pc1 ´ c2q `
p1
2

¯

` ymaxp`1 ´ p1´ c1qq
¯

loomoon

Final quantum search among all updated elements

˙

We obtain the time exponent 0.2182 (rounded upwards) with the following parameters
(rounded). The memory exponent is 0.2182 as well.

`0 “ ´0.2021, `1 “ 0.1883, `2 “ 0.2102, `3 “ 0.2182, `4 “ 0.2182
c3 “ 0.2182, c2 “ 0.4283, c1 “ 0.6305, p0 “ ´0.2093, p1 “ ´0.0298, p2 “ ´0.0160

α1 “ 0.0172, α2 “ 0.0145, α3 “ 0.0107, γ1 “ 0.0020

Chapter7Conclusion
In this chapter, we summarize the main contributions of this thesis and present some future
directions that could be explored.

An important aspect of all practical SVP algorithm is that they rely on heuristics to
analyze their complexity. In particular, there is a significant gap between the best heuristic and
provable algorithms for SVP. While provable algorithms are less of an interest for cryptography,
since the choice of security parameters are based on heuristics that are much faster, they are
still interesting from a theoretical perspective. The (provable) complexity of the SVP is still far
from being well-understood. In Chapter 3 we managed to obtain a provable trade-off between
time and memory for the SVP. However, we did not optimize the constants in the exponents
since their origin in our proofs cannot be explained easily: They must satisfy nontrivial lower
and upper bounds for the proofs to work. A more thorough analysis of our algorithm would be
of interest to compare our trade-off with the best sieving algorithms and the best enumeration
algorithms in the two extremes. Furthermore, even the best provable algorithm remains
somewhat of a mystery [ADRS15, AS18b]. Its 2n running time is based on Discrete Gaussian
Sampling (DGS), a prominent tool in lattice-based cryptography. The algorithm works by
sampling a Gaussian with parameter roughly λ1pLq?

n
, a task made difficult by the fact that this

parameter can be quite below the smoothing parameter ηεpLq of the lattice. There are more
efficient algorithms to sample discrete Gaussian above the smoothing parameter, notably a
2n{2 algorithm by the same authors, using towers of lattices [ADRS15]. While ηεpLq can be in
the order of λnpLq in the worst case, we expect a random lattice to have smoothing parameter
in the order of λ1pLq?

n
, hence within the reach of more efficient algorithms. Therefore a natural

question is whether DGS and hence SVP is easier for random lattices.
In Chapter 4, we obtained the fastest quantum algorithm without any heuristic assumptions

for SVP and the fastest classical algorithm that has a space complexity 20.5n`opnq. An intriguing
feature of our algorithms is that their complexities depends on a quantity related to kissing
number of the lattice. While the only known upper bound on this number is exponential
(20.401n`opnq), very little is known about kissing numbers in general. So far it is only known
that some family of lattices can have a barely exponential kissing number (20.0338n) and most
practical lattices have a sub-exponential (2opnq) kissing number. This suggests that more
algorithms could benefit from a similar analysis to ours and that some provable algorithms
are more competitive in practice than imagined. One may also imagine a link between the
lattice kissing number and the gap of a lattice defined as the quotient of successive minima.
Lattices with a gap appear when solving the Learning With Errors (LWE) problem with the
embedding technique and there have been some studies on the SVP problem in this setting
[WLW]. Finally, the exact relationship between the kissing number and the quantity βpLq

127

128 Chapter 7. Conclusion

that we introduced is unclear, more work will be needed to clarify the situation.
Enumeration is another important technique to solve SVP and CVP, and it has been

significantly improved in practice thanks to cylinder pruning, discrete and extreme pruning
methods. In Chapter 5, we obtained a quantum quadratic speed-up for both cylinder pruning
and discrete pruning and developed several several tweaks to make discrete pruning more
efficient and powerful. Whereas a lower bound for the extreme cylinder pruning is given in
[ANSS18], no study of the limitations of discrete pruning exists. Recent work has shown that
enumeration with cylinder pruning can be used to improve the complexity of lattice reduction
algorithms [ABF`20]. It remains open whether further improvements can be obtained by
using discrete pruning instead.

Another important feature of our results in Chapter 4 and Chapter 6 is the type of quantum
memory used. There are three types of quantum memories, in increasing order of strength:
plain qubit, quantum accessible classical memory (QRACM) and quantum accessible quantum
memory (QRAQM). The QRAQM model is used in most quantum walk algorithms to date,
but its practical time-efficient realizations are still unclear. The QRACM model is omnipresent
in Quantum Machine Learning algorithms (see for example [Pra14]). All previously-known
quantum algorithms for the SVP relied on QRACM whereas our algorithms in Chapter 4 only
use plain qubits. We similarly improved algorithms for the random subset sum problem by
demonstrating an algorithm using QRACM whose complexity is comparable with the state-of-
art using QRAQM. We also obtained the fastest algorithm for this problem using QRAQM.
A natural question is whether our improvements in SVP and subset-sum algorithms can be
replicated in coding theory where only QRAQM algorithms exist for quantum information set
decoding, due to the nested structure of the k-sum problem inside the search of the information
set. Another interesting direction is to look at quantum algorithms for the Short Integer
Solution problem (SIS) which shares some similar structure with the random subset sum
problem.

In Chapter 6 we successfully removed a heuristic used in quantum walk in previous
algorithms for decoding and subset sum, namely an update with expected constant time U can
be replaced by an update with exact time U without affecting the runtime of the algorithm, up
to a polynomial factor. We designed a new data structure for the vertices in the quantum walk,

0Image from Physics World march 2013.

https://physicsworld.com/a/quantum-frontiers-free-pdf-download/

129

and a new update procedure with guaranteed time to prove the correctness of this statement.
However in our best QRAQM algorithm, we introduced a technique to speed up the filtering
of representations with a quantum search. Our new data structure does not guarantee that
the update can be done in constant time for algorithms using this technique. One can imagine
another approach where we study the quantum walk with imperfect setup and updates and
try to bound the amplitude of the bad states for each step of the walk and show than in the
end the imperfect quantum walk returns a marked vertex with constant probability. Another
possible way to resolve this issue is to use learning graphs [CLM20] for which the expected
update time seems to appear naturally in the analyses without introducing heuristics.

Bibliography

[ABB`17] Erdem Alkim, Nina Bindel, Johannes A. Buchmann, Özgür Dagdelen, Edward
Eaton, Gus Gutoski, Juliane Krämer, and Filip Pawlega. Revisiting TESLA in
the quantum random oracle model. In Proc. PQCrypto 2017, volume 10346 of
Lecture Notes in Computer Science, pages 143–162. Springer, 2017.

[ABF`20] Martin R. Albrecht, Shi Bai, Pierre-Alain Fouque, Paul Kirchner, Damien Stehlé,
and Weiqiang Wen. Faster enumeration-based lattice reduction: Root hermite
factor k1/(2k) time kk/8+o(k). In Daniele Micciancio and Thomas Ristenpart,
editors, Advances in Cryptology - CRYPTO 2020 - 40th Annual International
Cryptology Conference, CRYPTO 2020, Santa Barbara, CA, USA, August 17-21,
2020, Proceedings, Part II, volume 12171 of Lecture Notes in Computer Science,
pages 186–212. Springer, 2020.

[ABI`20] Andris Ambainis, Kaspars Balodis, Janis Iraids, Kamil Khadiev, Vladislavs
Klevickis, Krisjanis Prusis, Yixin Shen, Juris Smotrovs, and Jevgenijs Vihrovs.
Quantum lower and upper bounds for 2d-grid and dyck language. In Javier
Esparza and Daniel Král’, editors, 45th International Symposium on Mathe-
matical Foundations of Computer Science, MFCS 2020, August 24-28, 2020,
Prague, Czech Republic, volume 170 of LIPIcs, pages 8:1–8:14. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2020.

[ABLR20] Martin R. Albrecht, Shi Bai, Jianwei Li, and Joe Rowell. Lattice reduction with
approximate enumeration oracles: Practical algorithms and concrete performance.
IACR Cryptol. ePrint Arch., 2020:1260, 2020.

[ACF`15] Martin R. Albrecht, Carlos Cid, Jean-Charles Faugère, Robert Fitzpatrick, and
Ludovic Perret. On the complexity of the bkw algorithm on lwe. Des. Codes
Cryptography, 74(2):325–354, February 2015.

[ACKS21] Divesh Aggarwal, Yanlin Chen, Rajendra Kumar, and Yixin Shen. Improved
(provable) algorithms for the shortest vector problem via bounded distance
decoding. In Markus Bläser and Benjamin Monmege, editors, 38th International
Symposium on Theoretical Aspects of Computer Science, STACS 2021, March
16-19, 2021, Saarbrücken, Germany (Virtual Conference), volume 187 of LIPIcs,
pages 4:1–4:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

[ADH`19] Martin R. Albrecht, Léo Ducas, Gottfried Herold, Elena Kirshanova, Eamonn W.
Postlethwaite, and Marc Stevens. The general sieve kernel and new records in
lattice reduction. 11477:717–746, 2019.

131

132 Bibliography

[ADPS16] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe. Post-
quantum key exchange - A new hope. In Proc. 25th USENIX, pages 327–343.
USENIX, 2016.

[ADRS15] Divesh Aggarwal, Daniel Dadush, Oded Regev, and Noah Stephens-Davidowitz.
Solving the shortest vector problem in 2n time using discrete gaussian sampling:
Extended abstract. In Proceedings of the Forty-Seventh Annual ACM on Sympo-
sium on Theory of Computing, STOC 2015, Portland, OR, USA, June 14-17,
2015, pages 733–742, 2015.

[AFV11] Shweta Agrawal, David Mandell Freeman, and Vinod Vaikuntanathan. Functional
encryption for inner product predicates from learning with errors. In Dong Hoon
Lee and Xiaoyun Wang, editors, Advances in Cryptology – ASIACRYPT 2011,
pages 21–40, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[AGJ19] Simon Apers, András Gilyén, and Stacey Jeffery. A unified framework of quantum
walk search, 2019.

[AGS18] Scott Aaronson, Daniel Grier, and Luke Schaeffer. A quantum query complexity
trichotomy for regular languages. Electronic Colloquium on Computational
Complexity (ECCC), 26:61, 2018.

[Ajt96] Miklós Ajtai. Generating hard instances of lattice problems (extended abstract).
In Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of
Computing, Philadelphia, Pennsylvania, USA, May 22-24, 1996, pages 99–108,
1996.

[Ajt98] Miklós Ajtai. The shortest vector problem in l2 is np-hard for randomized
reductions (extended abstract). In Proceedings of the Thirtieth Annual ACM
Symposium on Theory of Computing, STOC ’98, page 10–19, New York, NY,
USA, 1998. Association for Computing Machinery.

[AK17] Andris Ambainis and Martins Kokainis. Quantum algorithm for tree size estima-
tion, with applications to backtracking and 2-player games. In Proc. STOC ’17.
ACM, 2017.

[AKS01] Miklós Ajtai, Ravi Kumar, and D. Sivakumar. A sieve algorithm for the shortest
lattice vector problem. In Proceedings of the Thirty-third Annual ACM Sympo-
sium on Theory of Computing, STOC ’01, pages 601–610, New York, NY, USA,
2001. ACM.

[Ale03] M. Alekhnovich. More on average case vs approximation complexity. In 44th An-
nual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings.,
pages 298–307, 2003.

[ALNS20] Divesh Aggarwal, Jianwei Li, Phong Q. Nguyen, and Noah Stephens-Davidowitz.
Slide reduction, revisited—Filling the gaps in SVP approximation. In CRYPTO,
2020.

Bibliography 133

[Amb07] Andris Ambainis. Quantum Walk Algorithm for Element Distinctness. SIAM J.
Comput., 37(1):210–239, 2007.

[Amb10] Andris Ambainis. Quantum search with variable times. Theory Comput. Syst.,
47(3):786–807, 2010.

[AN17] Yoshinori Aono and Phong Q. Nguyen. Random sampling revisited: Lattice
enumeration with discrete pruning. In Advances in cryptology—EUROCRYPT
2017 Part II, volume 10211 of LNCS, pages 65–102. Springer, 2017.

[ANS18] Yoshinori Aono, Phong Q. Nguyen, and Yixin Shen. Quantum lattice enumeration
and tweaking discrete pruning. In Thomas Peyrin and Steven Galbraith, editors,
Advances in Cryptology – ASIACRYPT 2018, pages 405–434, Cham, 2018.
Springer International Publishing.

[ANSS18] Y. Aono, P. Q. Nguyen, T. Seito, and J. Shikata. Lower bounds on lattice
enumeration with extreme pruning. In Proc. of 38th CRYPTO, Part II, volume
10992 of LNCS. Springer, 2018.

[AS18a] Divesh Aggarwal and Noah Stephens-Davidowitz. (gap/s) eth hardness of svp.
In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of
Computing, pages 228–238, 2018.

[AS18b] Divesh Aggarwal and Noah Stephens-Davidowitz. Just take the average! an
embarrassingly simple 2ˆn-time algorithm for SVP (and CVP). In 1st Symposium
on Simplicity in Algorithms, SOSA 2018, January 7-10, 2018, New Orleans, LA,
USA, pages 12:1–12:19, 2018.

[AWHT16] Yoshinori Aono, Yuntao Wang, Takuya Hayashi, and Tsuyoshi Takagi. Improved
progressive BKZ algorithms and their precise cost estimation by sharp simulator.
IACR Cryptology ePrint Archive, 2016:146, 2016. Full version of EUROCRYPT
2016.

[Bab85] László Babai. On Lovász’ lattice reduction and the nearest lattice point problem.
In Proc. STACS’85, volume 182 of LNCS, pages 13–20. Springer, 1985.

[BBBV97] Charles H. Bennett, Ethan Bernstein, Gilles Brassard, and Umesh V. Vazirani.
Strengths and weaknesses of quantum computing. SIAM J. Comput., 26(5):1510–
1523, 1997.

[BBHT05] Michel Boyer, Gilles Brassard, Peter Hoyer, and Alain Tappa. Tight Bounds on
Quantum Searching, volume 46, pages 187 – 199. 01 2005.

[BBSS20] Xavier Bonnetain, Rémi Bricout, André Schrottenloher, and Yixin Shen. Im-
proved classical and quantum algorithms for subset-sum. In Shiho Moriai and
Huaxiong Wang, editors, Advances in Cryptology - ASIACRYPT 2020 - 26th
International Conference on the Theory and Application of Cryptology and Infor-
mation Security, Daejeon, South Korea, December 7-11, 2020, Proceedings, Part
II, volume 12492 of Lecture Notes in Computer Science, pages 633–666. Springer,
2020.

134 Bibliography

[BCDL19] Rémi Bricout, André Chailloux, Thomas Debris-Alazard, and Matthieu Lequesne.
Ternary syndrome decoding with large weight. In SAC 2019, volume 11959 of
LNCS, pages 437–466. Springer, 2019.

[BCJ11] Anja Becker, Jean-Sébastien Coron, and Antoine Joux. Improved generic al-
gorithms for hard knapsacks. In EUROCRYPT, volume 6632 of LNCS, pages
364–385. Springer, 2011.

[BDGL16] Anja Becker, Léo Ducas, Nicolas Gama, and Thijs Laarhoven. New directions in
nearest neighbor searching with applications to lattice sieving. In Proceedings
of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages 10–24, 2016.

[BEG`18] Mahdi Boroujeni, Soheil Ehsani, Mohammad Ghodsi, MohammadTaghi Haji-
Aghayi, and Saeed Seddighin. Approximating edit distance in truly subquadratic
time: Quantum and mapreduce. In Proceedings of the Twenty-Ninth Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 1170–1189. SIAM, 2018.

[Ben89] Charles H. Bennett. Time/space trade-offs for reversible computation. SIAM J.
Comput., 18(4):766–776, 1989.

[BGJ13] Anja Becker, Nicolas Gama, and Antoine Joux. Solving shortest and closest
vector problems: The decomposition approach. IACR Cryptol. ePrint Arch.,
2013:685, 2013.

[BHMT02] Gilles Brassard, Peter Hoyer, Michele Mosca, and Alain Tapp. Quantum am-
plitude amplification and estimation. Contemporary Mathematics, 305:53–74,
2002.

[BHT98] Gilles Brassard, Peter Høyer, and Alain Tapp. Quantum counting. In ICALP,
volume 1443 of Lecture Notes in Computer Science, pages 820–831. Springer,
1998.

[BI15] Arturs Backurs and Piotr Indyk. Edit distance cannot be computed in strongly
subquadratic time (unless seth is false). In Proceedings of the forty-seventh
annual ACM symposium on Theory of computing, pages 51–58. ACM, 2015.

[BJLM13] Daniel J. Bernstein, Stacey Jeffery, Tanja Lange, and Alexander Meurer. Quan-
tum algorithms for the subset-sum problem. In PQCrypto, volume 7932 of LNCS,
pages 16–33. Springer, 2013.

[BJMM12] Anja Becker, Antoine Joux, Alexander May, and Alexander Meurer. Decoding
random binary linear codes in 2n{20: How 1` 1 “ 0 improves information set
decoding. In EUROCRYPT, volume 7237 of LNCS, pages 520–536. Springer,
2012.

[BKW03] Avrim Blum, Adam Kalai, and Hal Wasserman. Noise-tolerant learning, the
parity problem, and the statistical query model. J. ACM, 50(4):506–519, July
2003.

Bibliography 135

[BLP`13] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien
Stehlé. Classical hardness of learning with errors. In Proceedings of the forty-fifth
annual ACM symposium on Theory of computing, pages 575–584. ACM, 2013.

[BLS16] Shi Bai, Thijs Laarhoven, and Damien Stehlé. Tuple lattice sieving. IACR
Cryptology ePrint Archive, 2016:713, 2016.

[BM18] Leif Both and Alexander May. Decoding linear codes with high error rate and
its impact for lpn security. In Tanja Lange and Rainer Steinwandt, editors,
Post-Quantum Cryptography, pages 25–46, Cham, 2018. Springer International
Publishing.

[BN18] Xavier Bonnetain and María Naya-Plasencia. Hidden shift quantum cryptanalysis
and implications. In ASIACRYPT (1), volume 11272 of LNCS, pages 560–592.
Springer, 2018.

[Bon19] Xavier Bonnetain. Improved low-qubit hidden shift algorithms. CoRR, 2019.

[BPR12] Abhishek Banerjee, Chris Peikert, and Alon Rosen. Pseudorandom functions
and lattices. In David Pointcheval and Thomas Johansson, editors, Advances
in Cryptology – EUROCRYPT 2012, pages 719–737, Berlin, Heidelberg, 2012.
Springer Berlin Heidelberg.

[BPS19] Harry Buhrman, Subhasree Patro, and Florian Speelman. The quantum strong
exponential-time hypothesis, 2019.

[Bri84] Ernest F. Brickell. Breaking iterated knapsacks. In Advances in Cryptology,
Proceedings of CRYPTO ’84, Santa Barbara, California, USA, August 19-22,
1984, Proceedings, pages 342–358, 1984.

[BS20] Xavier Bonnetain and André Schrottenloher. Quantum security analysis of
CSIDH. In EUROCRYPT 2020, LNCS. Springer, May 2020.

[Bö11] Elena Böhme. Verbesserte subset-sum algorithmen. Master’s thesis, Ruhr
Universität Bochum, 2011.

[CCL18] Yanlin Chen, Kai-Min Chung, and Ching-Yi Lai. Space-efficient classical and
quantum algorithms for the shortest vector problem. Quantum Information &
Computation, 18(3&4):285–306, 2018.

[CDG`18] Diptarka Chakraborty, Debarati Das, Elazar Goldenberg, Michal Koucký, and
Michael E. Saks. Approximating edit distance within constant factor in truly sub-
quadratic time. In 59th Annual IEEE Symposium on Foundations of Computer
Science (FOCS), Paris, France, Oct 7-9, 2018, pages 979–990, 2018.

[CDLP13] K. Chung, D. Dadush, F. Liu, and C. Peikert. On the lattice smoothing parameter
problem. In 2013 IEEE Conference on Computational Complexity, pages 230–241,
2013.

[Che13] Yuanmi Chen. Réduction de réseau et sécurité concrète du chiffrement complète-
ment homomorphe. PhD thesis, Univ. Paris 7, 2013.

136 Bibliography

[CHKP10] David Cash, Dennis Hofheinz, Eike Kiltz, and Chris Peikert. Bonsai trees, or
how to delegate a lattice basis. In Henri Gilbert, editor, Advances in Cryptology
– EUROCRYPT 2010, pages 523–552, Berlin, Heidelberg, 2010. Springer Berlin
Heidelberg.

[CLM20] Titouan Carette, Mathieu Laurière, and Frédéric Magniez. Extended learning
graphs for triangle finding. Algorithmica, 82(4):980–1005, 2020.

[CN11] Yuanmi Chen and Phong Q. Nguyen. BKZ 2.0: better lattice security estimates.
In Proc. ASIACRYPT 2011, volume 7073 of LNCS, pages 1–20. Springer, 2011.

[dB89] Rudi de Buda. Some optimal codes have structure. IEEE Journal on Selected
Areas in Communications, 7(6):893–899, 1989.

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE
Transactions on Information Theory, 22(6):644–654, November 1976.

[DH96] Christoph Dürr and Peter Høyer. A quantum algorithm for finding the minimum.
CoRR, quant-ph/9607014, 1996.

[dPLP16] Rafaël del Pino, Vadim Lyubashevsky, and David Pointcheval. The whole is
less than the sum of its parts: Constructing more efficient lattice-based AKEs.
In Proc. SCN 2016, volume 9841 of Lecture Notes in Computer Science, pages
273–291. Springer, 2016.

[DRS14] Daniel Dadush, Oded Regev, and Noah Stephens-Davidowitz. On the closest
vector problem with a distance guarantee. In IEEE 29th Conference on Com-
putational Complexity, CCC 2014, Vancouver, BC, Canada, June 11-13, 2014,
pages 98–109, 2014.

[Duc18] Léo Ducas. Shortest vector from lattice sieving: A few dimensions for free. In
Jesper Buus Nielsen and Vincent Rijmen, editors, Advances in Cryptology -
EUROCRYPT 2018 - 37th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Tel Aviv, Israel, April 29 - May 3,
2018 Proceedings, Part I, volume 10820 of Lecture Notes in Computer Science,
pages 125–145. Springer, 2018.

[EM19] Andre Esser and Alexander May. Better sample - random subset sum in 20.255n
and its impact on decoding random linear codes. CoRR, abs/1907.04295, 2019.

[FT87] András Frank and Éva Tardos. An application of simultaneous diophantine
approximation in combinatorial optimization. Combinatorica, 7(1):49–65, 1987.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings
of the 41st Annual ACM Symposium on Theory of Computing, STOC 2009,
Bethesda, MD, USA, May 31 - June 2, 2009, pages 169–178, 2009.

[GGH97] O. Goldreich, S. Goldwasser, and S. Halevi. Public-key cryptosystems from
lattice reduction problems. In Proc. CRYPTO 1997, volume 1294 of LNCS,
pages 112–131. Springer, 1997.

Bibliography 137

[GJ79] M. R. Garey and David S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. W. H. Freeman, 1979.

[GKV10] S. Dov Gordon, Jonathan Katz, and Vinod Vaikuntanathan. A group signature
scheme from lattice assumptions. In Masayuki Abe, editor, Advances in Cryp-
tology - ASIACRYPT 2010, pages 395–412, Berlin, Heidelberg, 2010. Springer
Berlin Heidelberg.

[GLM08] Vittorio Giovannetti, Seth Lloyd, and Lorenzo Maccone. Quantum random
access memory. Phys. Rev. Lett., 100:160501, Apr 2008.

[GN08] Nicolas Gama and Phong Q. Nguyen. Finding short lattice vectors within
mordell’s inequality. In Proceedings of the 40th Annual ACM Symposium on
Theory of Computing, Victoria, British Columbia, Canada, May 17-20, 2008,
pages 207–216, 2008.

[GNR10] Nicolas Gama, Phong Q. Nguyen, and Oded Regev. Lattice enumeration using ex-
treme pruning. In Henri Gilbert, editor, Advances in Cryptology – EUROCRYPT
2010, pages 257–278, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

[GOO] GOOGLE. Experimenting with post-quantum cryptography. Available at https:
//security.googleblog.com/2016/07/experimenting-with-post-quantum.
html.

[Got09] Daniel Gottesman. An introduction to quantum error correction and fault-
tolerant quantum computation, 2009.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard
lattices and new cryptographic constructions. In Proceedings of the fortieth
annual ACM symposium on Theory of computing, pages 197–206. ACM, 2008.

[Gro96a] Lov K. Grover. A Fast Quantum Mechanical Algorithm for Database Search.
In Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of
Computing 1996, pages 212–219. ACM, 1996.

[Gro96b] Lov K. Grover. A fast quantum mechanical algorithm for database search. In
Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of
Computing, Philadelphia, Pennsylvania, USA, May 22-24, 1996, pages 212–219,
1996.

[Hel85] Bettina Helfrich. Algorithms to construct minkowski reduced and hermite
reduced lattice bases. Theor. Comput. Sci., 41(2–3):125–139, December 1985.

[HJ10] Nick Howgrave-Graham and Antoine Joux. New generic algorithms for hard
knapsacks. In EUROCRYPT, volume 6110 of LNCS, pages 235–256. Springer,
2010.

[HK17] Gottfried Herold and Elena Kirshanova. Improved algorithms for the approximate
k-list problem in euclidean norm. In Serge Fehr, editor, Public-Key Cryptography
– PKC 2017, pages 16–40, Berlin, Heidelberg, 2017. Springer Berlin Heidelberg.

https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html
https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html
https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html

138 Bibliography

[HLGJ20] C. Hann, G. Lee, S. Girvin, and Liang Jiang. The resilience of quantum random
access memory to generic noise. arXiv: Quantum Physics, 2020.

[HM18] Alexander Helm and Alexander May. Subset sum quantumly in 1.17n. In TQC,
volume 111 of LIPIcs, pages 5:1–5:15. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, 2018.

[Hoe63] Wassily Hoeffding. Probability inequalities for sums of bounded random variables.
Journal of the American Statistical Association, 58(301):13–30, 1963.

[HPS11] Guillaume Hanrot, Xavier Pujol, and Damien Stehlé. Analyzing blockwise lattice
algorithms using dynamical systems. In Phillip Rogaway, editor, Advances in
Cryptology – CRYPTO 2011, pages 447–464, Berlin, Heidelberg, 2011. Springer
Berlin Heidelberg.

[HR07] Ishay Haviv and Oded Regev. Tensor-based hardness of the shortest vector
problem to within almost polynomial factors. In Proceedings of the thirty-ninth
annual ACM symposium on Theory of computing, pages 469–477, 2007.

[HS74] Ellis Horowitz and Sartaj Sahni. Computing partitions with applications to the
knapsack problem. J. ACM, 21(2):277–292, 1974.

[HS07] Guillaume Hanrot and Damien Stehlé. Improved analysis of kannan’s shortest
lattice vector algorithm. In Advances in Cryptology - CRYPTO 2007, 27th
Annual International Cryptology Conference, Santa Barbara, CA, USA, August
19-23, 2007, Proceedings, pages 170–186, 2007.

[ILL89] Russell Impagliazzo, Leonid A Levin, and Michael Luby. Pseudo-random gener-
ation from one-way functions. In Proceedings of the twenty-first annual ACM
symposium on Theory of computing, pages 12–24, 1989.

[Jr.83] Hendrik W. Lenstra Jr. Integer programming with a fixed number of variables.
Math. Oper. Res., 8(4):538–548, 1983.

[Kan83] R. Kannan. Improved algorithms for integer programming and related lattice
problems. In Proc. 15th ACM STOC, pages 193–206, 1983.

[Kan87] Ravi Kannan. Minkowski’s convex body theorem and integer programming.
Math. Oper. Res., 12(3):415–440, 1987.

[KF16] Paul Kirchner and Pierre-Alain Fouque. Time-memory trade-off for lattice
enumeration in a ball. Cryptology ePrint Archive, Report 2016/222, 2016.
https://eprint.iacr.org/2016/222.

[Kho05] Subhash Khot. Hardness of approximating the shortest vector problem in lattices.
J. ACM, 52(5):789–808, 2005.

[KL78] Grigorii Anatol’evich Kabatiansky and Vladimir Iosifovich Levenshtein. On
bounds for packings on a sphere and in space. Problemy Peredachi Informatsii,
14(1):3–25, 1978.

https://eprint.iacr.org/2016/222

Bibliography 139

[Kle00] Philip Klein. Finding the closest lattice vector when it’s unusually close. In
Proceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA ’00, page 937–941, USA, 2000. Society for Industrial and Applied
Mathematics.

[Kl,e17] Vladislavs Kl,evickis. Čaulu programmas cel,a atrašanai grafā (span programs
for finding a path in a graph). Undergraduate 3rd year project, University of
Latvia, 2017.

[KMPM19] Elena Kirshanova, Erik Mårtensson, Eamonn W. Postlethwaite, and Sub-
hayan Roy Moulik. Quantum algorithms for the approximate k-list problem and
their application to lattice sieving. In ASIACRYPT, volume 11921 of LNCS,
pages 521–551. Springer, 2019.

[KP20] Iordanis Kerenidis and Anupam Prakash. Quantum gradient descent for linear
systems and least squares. Phys. Rev. A, 101:022316, Feb 2020.

[KT17] Ghazal Kachigar and Jean-Pierre Tillich. Quantum information set decoding
algorithms. In PQCrypto, volume 10346 of LNCS, pages 69–89. Springer, 2017.

[Kum21] Rajendra Kumar. Exponential Time/Space Algorithms and Reductions for Lattice
Problems. Phd thesis, Indian Institute of Technology, Kanpur and National
University of Singapore, 2021.

[Kup13] Greg Kuperberg. Another subexponential-time quantum algorithm for the
dihedral hidden subgroup problem. In TQC, volume 22 of LIPIcs, pages 20–34.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2013.

[Laa15a] Thijs Laarhoven. Search problems in cryptography. PhD thesis, PhD thesis,
Eindhoven University of Technology, 2015.

[Laa15b] Thijs Laarhoven. Sieving for shortest vectors in lattices using angular locality-
sensitive hashing. In Proc. CRYPTO 2015 - Part I, volume 9215 of LNCS.
Springer, 2015.

[LLL82] A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász. Factoring polynomials with
rational coefficients. Mathematische Ann., 261:513–534, 1982.

[LMPR08] Vadim Lyubashevsky, Daniele Micciancio, Chris Peikert, and Alon Rosen. Swifft:
A modest proposal for fft hashing. In Kaisa Nyberg, editor, Fast Software
Encryption, pages 54–72, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

[LMvdP15a] Thijs Laarhoven, Michele Mosca, and Joop van de Pol. Finding shortest lattice
vectors faster using quantum search. Des. Codes Cryptography, 77(2-3):375–400,
2015.

[LMvdP15b] Thijs Laarhoven, Michele Mosca, and Joop van de Pol. Finding shortest lattice
vectors faster using quantum search. Des. Codes Cryptogr., 77(2-3):375–400,
2015.

140 Bibliography

[LN13] Mingjie Liu and Phong Q. Nguyen. Solving BDD by enumeration: An update.
In Topics in Cryptology - Proc. CT-RSA 2013, volume 7779 of LNCS. Springer,
2013.

[LN20] Jianwei Li and Phong Q. Nguyen. A complete analysis of the bkz lattice
reduction algorithm. Cryptology ePrint Archive, Report 2020/1237, 2020. https:
//eprint.iacr.org/2020/1237.

[LO83] J. C. Lagarias and Andrew M. Odlyzko. Solving low-density subset sum problems.
In FOCS, pages 1–10. IEEE Computer Society, 1983.

[LO85] J. C. Lagarias and Andrew M. Odlyzko. Solving low-density subset sum problems.
J. ACM, 32(1):229–246, 1985.

[LP11] Richard Lindner and Chris Peikert. Better key sizes (and attacks) for lwe-based
encryption. In CT-RSA, volume 6558 of LNCS, pages 319–339. Springer, 2011.

[LPS10] Vadim Lyubashevsky, Adriana Palacio, and Gil Segev. Public-key cryptographic
primitives provably as secure as subset sum. In TCC, volume 5978 of LNCS,
pages 382–400. Springer, 2010.

[LS90] Robert Y. Levin and Alan T. Sherman. A note on bennett’s time-space tradeoff
for reversible computation. SIAM J. Comput., 19(4):673–677, 1990.

[Lyu05] Vadim Lyubashevsky. The parity problem in the presence of noise, decoding
random linear codes, and the subset sum problem. In APPROX-RANDOM,
volume 3624 of LNCS, pages 378–389. Springer, 2005.

[Lyu12] Vadim Lyubashevsky. Lattice signatures without trapdoors. In David Pointcheval
and Thomas Johansson, editors, Advances in Cryptology – EUROCRYPT 2012,
pages 738–755, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[MGM20] O. D. Matteo, V. Gheorghiu, and M. Mosca. Fault-tolerant resource estimation of
quantum random-access memories. IEEE Transactions on Quantum Engineering,
1:1–13, 2020.

[Mic98] Daniele Micciancio. The shortest vector in a lattice is hard to approximate to
within some constant. In Proceedings of the 39th Annual Symposium on Foun-
dations of Computer Science, FOCS ’98, page 92, USA, 1998. IEEE Computer
Society.

[MMT11] Alexander May, Alexander Meurer, and Enrico Thomae. Decoding random
linear codes in Õ20.054n. In ASIACRYPT, volume 7073 of LNCS, pages 107–124.
Springer, 2011.

[MNRS11] F. Magniez, A. Nayak, J. Roland, and M. Santha. Search via quantum walk.
SIAM Journal on Computing, 40(1):142–164, 2011.

[MO15] Alexander May and Ilya Ozerov. On computing nearest neighbors with applica-
tions to decoding of binary linear codes. In EUROCRYPT (1), volume 9056 of
LNCS, pages 203–228. Springer, 2015.

https://eprint.iacr.org/2020/1237
https://eprint.iacr.org/2020/1237

Bibliography 141

[Mon15] A Montanaro. Quantum walk speedup of backtracking algorithms. ArXiv, 2015.

[Mon20] Ashley Montanaro. Quantum speedup of branch-and-bound algorithms. Phys.
Rev. Research, 2:013056, Jan 2020.

[MP13] Daniele Micciancio and Chris Peikert. Hardness of SIS and LWE with small
parameters. In Advances in Cryptology - CRYPTO 2013 - 33rd Annual Cryptology
Conference, Santa Barbara, CA, USA, August 18-22, 2013. Proceedings, Part I,
pages 21–39, 2013.

[MV10] Daniele Micciancio and Panagiotis Voulgaris. Faster exponential time algorithms
for the shortest vector problem. In Proceedings of the Twenty-First Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2010, Austin, Texas,
USA, January 17-19, 2010, pages 1468–1480, 2010.

[MW15] Daniele Micciancio and Michael Walter. Fast lattice point enumeration with
minimal overhead. In Proceedings of the Twenty-Sixth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2015, San Diego, CA, USA, January
4-6, 2015, pages 276–294, 2015.

[NIS] NIST. Post-quantum cryptography standardization. Available
at https://csrc.nist.gov/projects/post-quantum-cryptography/
post-quantum-cryptography-standardization.

[NS60] Donald J. Newman and Lawrence Shepp. The double dixie cup problem. The
American Mathematical Monthly, 67(1):58–61, 1960.

[NS02] Phong Q. Nguyen and Igor Shparlinski. The insecurity of the digital signature
algorithm with partially known nonces. J. Cryptology, 15(3):151–176, 2002.

[NS20] María Naya-Plasencia and André Schrottenloher. Optimal merging in quantum
k-xor and k-sum algorithms. In EUROCRYPT 2020, LNCS. Springer, May 2020.

[NSS01] Phong Q. Nguyen, Igor E. Shparlinski, and Jacques Stern. Distribution of modular
sums and the security of the server aided exponentiation. In Kwok-Yan Lam,
Igor Shparlinski, Huaxiong Wang, and Chaoping Xing, editors, Cryptography and
Computational Number Theory, pages 331–342, Basel, 2001. Birkhäuser Basel.

[NV08] Phong Q. Nguyen and Thomas Vidick. Sieve algorithms for the shortest vector
problem are practical. J. Mathematical Cryptology, 2(2):181–207, 2008.

[Oze16] Ilya Ozerov. Combinatorial Algorithms for Subset Sum Problems. PhD thesis,
Ruhr Universität Bochum, 2016.

[Poh81] Michael Pohst. On the computation of lattice vectors of minimal length, successive
minima and reduced bases with applications. SIGSAM Bull., 15(1):37–44, 1981.

[Pra14] Anupam Prakash. Quantum Algorithms for Linear Algebra and Machine Learning.
PhD thesis, EECS Department, University of California, Berkeley, Dec 2014.

https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization

142 Bibliography

[PS09] Xavier Pujol and Damien Stehlé. Solving the shortest lattice vector problem in
time 22.465n. IACR Cryptology ePrint Archive, 2009:605, 2009.

[Reg04] Oded Regev. Lattices in computer science, lecture 8, Fall 2004.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptog-
raphy. In Proceedings of the Thirty-Seventh Annual ACM Symposium on Theory
of Computing, STOC ’05, page 84–93, New York, NY, USA, 2005. Association
for Computing Machinery.

[Reg06] Oded Regev. Lattice-based cryptography. In Advances in Cryptology - CRYPTO
2006, 26th Annual International Cryptology Conference, Santa Barbara, Califor-
nia, USA, August 20-24, 2006, Proceedings, pages 131–141, 2006.

[Sch72] J.P.M. Schalkwijk. An algorithm for source coding. IEEE Transactions on
Information Theory, 18(3):395–399, May 1972.

[Sch87] Claus Peter Schnorr. A hierarchy of polynomial time lattice basis reduction
algorithms. Theor. Comput. Sci., 53:201–224, 1987.

[Sch03] Claus Peter Schnorr. Lattice reduction by random sampling and birthday
methods. In Proc. STACS 2003, volume 2607 of LNCS, pages 145–156. Springer,
2003.

[SE94a] Claus-Peter Schnorr and M. Euchner. Lattice basis reduction: Improved practical
algorithms and solving subset sum problems. Math. Program., 66:181–199, 1994.

[SE94b] Claus-Peter Schnorr and M. Euchner. Lattice basis reduction: improved practical
algorithms and solving subset sum problems. Math. Programming, 66:181–199,
1994.

[SH95] Claus-Peter Schnorr and H. H. Hörner. Attacking the Chor-Rivest cryptosystem
by improved lattice reduction. In Proc. of Eurocrypt ’95, volume 921 of LNCS,
pages 1–12. IACR, Springer-Verlag, 1995.

[Sha84] Adi Shamir. A polynomial-time algorithm for breaking the basic merkle-hellman
cryptosystem. IEEE Trans. Information Theory, 30(5):699–704, 1984.

[Sho97] Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer. SIAM J. Comput., 26(5):1484–1509, October
1997.

[SS81] Richard. Schroeppel and Adi. Shamir. A T “ Op2n{2q, S “ Op2n{4q algorithm
for certain np-complete problems. SIAM Journal on Computing, 10(3):456–464,
1981.

[SVP] SVP Challenges. https://www.latticechallenge.org/svp-challenge/.

[Vlă19] Serge Vlăduţ. Lattices with exponentially large kissing numbers. Moscow Journal
of Combinatorics and Number Theory, 8(2):163–177, 2019.

https://www.latticechallenge.org/svp-challenge/

Bibliography 143

[WF74] Robert A Wagner and Michael J Fischer. The string-to-string correction problem.
Journal of the ACM (JACM), 21(1):168–173, 1974.

[WLW] Wei Wei, Mingjie Liu, and Xiaoyun Wang. Finding shortest lattice vectors in
the presence of gaps. In Topics in Cryptology — CT-RSA 2015.

[YD17] Yang Yu and Léo Ducas. Second order statistical behavior of LLL and BKZ. In
Proc. SAC 2017, pages 3–22, 2017.

Notations and Acronyms

Notations (latin letters)

binpω, αq binomial, p. 97
b‹i Gram-Schmidt orthogonalization, p. 27
B˚ basis dual, p. 27
BnpRq Euclidean ball, p. 17
B‹ Gram-Schmidt orthogonalization, p. 27
covolpLq covolume of a lattice, p. 27
dSDpX,Y q statistical distance, p. 26
distpx, Sq distance, p. 17
dpT q degree of a tree, p. 24
Dnrα, βs (sub)knapsack, p. 100
Dnrα, β, γs (sub)knapsack, p. 100
DL,s discrete Gaussian distribution, p. 27
fpx, y, zq 3-way entropy, p. 100
gpx, yq 2-way entropy, p. 99
hpxq hamming entropy of x, p. 95
L1 ’c L2 merged list, p. 96
Lf filtered list, p. 96
Lpb1, . . . ,bnq lattice span, p. 27
L˚ lattice dual, p. 27
LpT q set of leaves of a tree, p. 24
neglpnq negligible function, p. 95
npT q depth of a tree, p. 24
opfpnqq “small o” notation, p. 17
Opfpnqq “big O” notation, p. 17
Õpfpnqq “soft O” notation, p. 17
pf1pα, βq HGK filtering probability, p. 97
pf2pα, β, γq BCJ filtering probability, p. 99
pf3pα0, β, γ0, α1, γ1q new filtering probability, p. 101
quadrinpω, α, β, γq quadrinomial, p. 101
trinpω, α, βq trinomial, p. 99
#T number of nodes of the tree, p. 24
U : conjugate transpose, p. 18
volp¨q volume, p. 17

145

146 Bibliography

V pT q set of nodes of a tree, p. 24

Notations (greek letters)

γpLq quantity related to the kissing number, p. 28
βpLq quantity related to the kissing number, p. 28
ηεpLq smoothing parameter, p. 29
λ1pLq length of a shortest non-zero vector, p. 27
ρspxq, ρspLq Gaussian mass function, p. 27
πipvq orthogonal projection, p. 27
τpLq kissing number, p. 28

Notations (blackboard letters)

C set of complex numbers, p. 17
EpXq expected value, p. 17
EtCu squared norm expected value, p. 17
N set of non-negative integers, p. 17
R set of real numbers, p. 17
VpXq variance, p. 17
Z set of integers, p. 17
Zn ring of residue classes modulo n, p. 17

Acronyms

α-BDD Bounded Distance Decoding, p. 29
CVP Closest Vector Problem, p. 29
γ-approx-CVP γ-Approximate Closest Vector Problem, p. 29
δ-DGSmσ Discrete Gaussian Sampling problem, p. 28
QRACM classical memory with quantum random access, p. 21
QRAQM quantum memory with quantum random access, p. 21
SVP Shortest Vector Problem, p. 28
γ-approx-SVP γ-Approximate Shortest Vector Problem, p. 29

	Contents
	List of Publications
	Introduction
	Contributions
	Provable Time-Space Trade-off for SVP
	Faster Provable Classical and Quantum Algorithms for SVP
	Quantum Quadratic Speed-up for Enumeration Algorithms for SVP and CVP
	Better Quantum and Classical Algorithms for the Random Subset Sum Problem
	Other Work

	Preliminaries
	Basic Notations
	Quantum Computing
	Introduction
	Access to Memory
	Quantum Search
	Quantum Walk Algorithms
	Quantum Walk on Trees

	Probability
	Lattices
	Reduction from CVP to DGS

	Discrete Gaussian Sampling and the Shortest Vector Problem
	Introduction
	Gaussian Sampling and the SVP
	Algorithm for Discrete Gaussian Sampling
	Algorithms for BDD and SVP
	Comparison with previous time/space trade-offs

	New Space Efficient Provable Algorithms for the SVP
	Introduction
	Improved algorithms for BDD
	BDD when is small
	BDD when is large
	Putting everything together

	Quantum algorithm for SVP
	Solving SVP by spherical caps on the sphere
	Dependency of the SVP on a quantity related to the kissing number

	Enumeration Algorithms for the Shortest Vector Problem
	Introduction
	Enumeration Algorithms and Pruning
	Pruned Enumeration
	Cylinder Pruning
	Discrete Pruning
	Success Probability
	Selecting Tags
	Noise Distributions in the Unique Setting
	Universality proof of Babai's and the natural partition

	Quantum speed-up of Cylinder Pruning
	Tools
	Application to Cylinder Pruning

	Linear Optimization for Discrete Pruning
	Reduction to Linear Optimization
	Limits of Orthogonal Enumeration
	Solving Linear Optimization

	Quantum Speed-up of Discrete Pruning
	Determining the best cells implicitly
	Finding the best lattice vector
	The Case of Extreme Pruning

	Impact

	The Subset Sum Problem
	Introduction
	List Merging and Classical Subset-sum Algorithms
	The HGJ algorithm
	The BCJ Algorithm
	Our Extended Representation
	Correctness of the Algorithms
	Sampling from a distribution of knapsacks

	Previous Quantum Algorithms for Subset-sum
	Solving Subset-sum with Quantum Walks

	Quantum Asymmetric HGJ
	Quantum Match-and-Filter
	Revisiting HGJ
	Improvement via Quantum Filtering
	Quantum Time-Memory Tradeoff

	New Algorithms Based on Quantum Walks
	Asymmetric 5th level
	Better Setup and Updates using quantum search
	Parameters

	Mitigating Quantum Walk Heuristics for Subset-Sum
	New Data Structure for Storing Lists
	New Data Structure for Vertices
	Estimating a Number of Solutions Reversibly
	Fraction of Marked Vertices
	Time Complexities without Heuristic 2

	Conclusion
	Bibliography
	Notations and Acronyms

